Tectona grandis

Invasive species Disclaimer

In view of the fact that some tree species are invasive, the world Agroforestry Center (ICRAF) has put in place a policy document on Invasive Alien Species, currently under draft available at Here.

For more information on this subject, please refer to
100 of the World's worst Invasive and Alien Species.




Species Index    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Multiple Criteria Search


Abelmoschus moschatus
Acacia aneura
Acacia angustissima
Acacia aulacocarpa
Acacia auriculiformis
Acacia catechu
Acacia cincinnata
Acacia crassicarpa
Acacia elatior
Acacia erioloba
Acacia etbaica
Acacia ferruginea
Acacia glauca
Acacia holosericea
Acacia karroo*
Acacia koa
Acacia laeta
Acacia lahai
Acacia leptocarpa
Acacia leucophloea
Acacia mangium
Acacia mearnsii*
Acacia melanoxylon
Acacia mellifera
Acacia nilotica subsp nilotica
Acacia pachycarpa
Acacia pennatula
Acacia polyacantha ssp. polyacantha
Acacia saligna
Acacia senegal
Acacia seyal
Acacia sieberiana
Acacia tortilis
Acacia xanthophloea
Acrocarpus fraxinifolius
Adansonia digitata
Adenanthera pavonina
Aegle marmelos
Afzelia africana
Afzelia quanzensis
Agathis macrophylla
Agathis philippinensis
Ailanthus altissima
Ailanthus excelsa
Ailanthus triphysa
Albizia adianthifolia
Albizia amara
Albizia anthelmintica
Albizia chinensis
Albizia coriaria
Albizia ferruginea
Albizia gummifera
Albizia julibrissin
Albizia lebbeck
Albizia odoratissima
Albizia procera
Albizia saman
Albizia versicolor
Albizia zygia
Aleurites moluccana
Allanblackia floribunda
Allanblackia stuhlmannii
Allanblackia ulugurensis
Alnus acuminata
Alnus cordata
Alnus japonica
Alnus nepalensis
Alnus rubra
Alphitonia zizyphoides
Alstonia boonei
Alstonia congensis
Alstonia scholaris
Altingia excelsa
Anacardium occidentale
Andira inermis
Annona cherimola
Annona muricata
Annona reticulata
Annona senegalensis
Annona squamosa
Anogeissus latifolia
Anthocephalus cadamba
Antiaris toxicaria
Antidesma bunius
Araucaria bidwillii
Araucaria cunninghamii
Arbutus unedo
Areca catechu
Arenga pinnata
Argania spinosa
Artemisia annua
Artocarpus altilis
Artocarpus camansi
Artocarpus heterophyllus
Artocarpus integer
Artocarpus lakoocha
Artocarpus mariannensis
Asimina triloba
Ateleia herbert-smithii
Aucomea klaineana
Averrhoa bilimbi
Averrhoa carambola
Azadirachta excelsa
Azadirachta indica
Azanza garckeana
Related Links
T. grandis, seedlings in nursery.
© David Boshier
Leaves and fruit at Kihei Maui, Hawaii
© Forest and Kim Starr
Habit at Keanae Arboretum, Maui, Hawaii
© Forest and Kim Starr

© Manuel Bertomeu

Local names:
Bengali (Segun,saigun), Burmese (kyun), English (teak wood,Indian oak,teak tree), Filipino (dalanang,djati), French (teck), German (tiek,Teak(holz)baum), Gujarati (sagach,saga), Hindi (saigun,sagwan,sagun), Indonesian (kulidawa,deleg,jati), Italian (teck

Tectona grandis is a large, deciduous tree reaching over 30 m in height in favourable conditions. Crown open with many small branches; the bole is often buttressed and may be fluted, up to 15 m long below the 1st branches, up to 1 m dbh. Bark is brown, distinctly fibrous with shallow, longitudinal fissures. The root system is superficial, often no deeper than 50 cm, but roots may extend laterally up to 15 m from the stem.

The very large, 4-sided leaves are shed for 3-4 months during the later half of the dry season, leaving the branchlets bare. Shiny above, hairy below, vein network clear, about 30 x 20 cm but young leaves up to 1 m long.

Flowers small, about 8 mm across, mauve to white and arranged in large, flowering heads, about 45 cm long; found on the topmost branches in the unshaded part of the crown.

Fruit is a drupe with 4 chambers; round, hard and woody, enclosed in an inflated, bladder-like covering; pale green at first, then brown at maturity. Each fruit may contain 0 to 4 seeds. There are 1 000-3500 fruits/kg.

The generic name comes from ‘tekka’, the Malabar name for T. grandis. The specific name, ‘grandis’, is Latin for ‘large’ or ‘great’.

Ecology

T. grandis will survive and grow under a wide range of climatic and edaphic conditions. For example, in northern Togo it grows in a region with an annual rainfall of nearly 600 mm and in Bangladesh a region with close to 4 000 mm. It grows best in a warm, moist, tropical climate with a significant difference between dry and wet seasons. It is a pioneer species, but with a long life span. In contrast to other pioneer species, T. grandis is able to persist and dominate and to naturally regenerate towards the climax phase of succession in most parts of its natural range.

It occurs naturally in various types of tropical deciduous forests. In seasonal climates, T. grandis is deciduous, while trees grown in non-seasonal climates are semi-deciduous. It is often a dominant member of a mixed deciduous forest, where its main associates are Xylia spp., Afzelia xylocarpa, Terminalia spp. and Lagerstroemia spp. The forest floor is often covered with bamboo. T. grandis generally occurs scattered but can form almost pure stands under favourable conditions. Young plants show a remarkable capability to recover after fire.

Native range
India, Indonesia, Laos, Myanmar, Thailand

Tree management

For plantations, stumps are planted at a spacing of 2 x 2 m. As the tree is deciduous, raising pure plantations is discouraged; rather, it is recommended to raise 80% of mixed indigenous species and the remaining 20% T. grandis. Fire protection is important; each year’s planting area should be should be protected by a fire line 10 m wide, which is cleared of all vegetation. Plantations must also be protected from grazing animals, as the soil is often susceptible to erosion. Coppicing and weeding should also be practised. T. grandis is a very strong light demander, and the optimum for its growth lies at 75-100% of full sunlight. It is intolerant of crown friction.

Initial growth of the tree is rapid. At an age of 5 years, an average height of 13 m and 10 cm dbh is not unusual; after 10 years, 16.5 m and 15 cm; after 20 years, 21.5 m and 23.5 cm. After 15 or 20 years, growth slows down. In stands of 80-year-old trees, maximum height is about 45 m, with a maximum diameter of 75 cm. Thinning takes place 4 times, at 5-, 10-, 18- and 28-year intervals after planting. The rotation period is approximately 80 years.

The average plantation yield in Java is 60-100 m³/ha, including thinning. Occasionally the final harvest may yield as much as 390 m³/ha in stands 80 years old. The mean annual volume increment is (min. 1) 3-6 (max. 15) m³/ha.

To reduce bulk in storage, the seed can be husked by rubbing it over a sieve. Another method is to load seed and large river gravel into a cement mixer. The seed can then be ‘floated’ off. Stumps, used for propagation, can be stored for up to a year.

Seed storage behaviour is orthodox. Viability can be maintained for at least 7 years in hermetic, air-dry storage at room temperature; there is no loss in viability after 7 years in hermetic, air-dry storage at 0-4 deg. C with 12% mc. Seed can be maintained for 10 years in hermetic, air-dry storage at 2 deg. C. There are 800-2 000 seeds/kg.

T. grandis will survive and grow under a wide range of climatic and edaphic conditions. For example, in northern Togo it grows in a region with an annual rainfall of nearly 600 mm and in Bangladesh a region with close to 4 000 mm. It grows best in a warm, moist, tropical climate with a significant difference between dry and wet seasons. It is a pioneer species, but with a long life span. In contrast to other pioneer species, T. grandis is able to persist and dominate and to naturally regenerate towards the climax phase of succession in most parts of its natural range.

It occurs naturally in various types of tropical deciduous forests. In seasonal climates, T. grandis is deciduous, while trees grown in non-seasonal climates are semi-deciduous. It is often a dominant member of a mixed deciduous forest, where its main associates are Xylia spp., Afzelia xylocarpa, Terminalia spp. and Lagerstroemia spp. The forest floor is often covered with bamboo. T. grandis generally occurs scattered but can form almost pure stands under favourable conditions. Young plants show a remarkable capability to recover after fire.

Natural regeneration is particularly abundant in forests exposed to fires and often occurs in patches. Harvest can take place after natural abscission. In such a case, the stage of ripeness is obvious, but the seed collector is faced with the task of reaching the seed before predators remove it and also of minimizing the effort expended on harvesting poor quality or inviable seed. The best quality fruits are usually the last ones shed.

Seeds collected from the forest floor are generally used to establish plantations. It is recommended that seeds be collected from trees over 20 years old. Seed is often collected from selected stands. The general practice is to use fruits stored for a year after soaking them in water for 24 hours. Fruit that has lain dormant in the ground for 30 to 40 years has been known to germinate abundantly. If it is necessary to use fruits from the same year, they should be subjected to alternate wetting then drying for 24 hours each for 14 days. Soaking the fruit for 48 hours in running water before sowing is the best treatment for hastening germination. Another method is to char (or half burn) the fruits by covering them with a thin layer of grass and lighting it. The germination rate is low, usually less than 50%, but sometimes up to 80%. Germination usually starts after 10 days but may take 2 to 3 months.

Seedlings exhibit epigeal germination. Although teak demands strong light, it prefers slight shading during the seedling stage. In Thailand, seedlings are kept in nursery beds for about a year. Then the rootstock is dug up, the stem cut off, and the stump planted into the field. Direct sowing into the field at the beginning of the rainy season is often practised in Java.

Both grafting and budding methods showed better results than branch cutting methods. The rooting time of cutting is 8 to 15 days, and the survival rate of rooted stock is 90-100%. 

Shoots can grow to 3 m in 2 years. Tissue cultures have been perfected for T. grandis. It is possible to produce 500 plants from a single bud of a mature tree or 3000 plants from a seedling in a year. Tissue-cultured plants possess better growth than seed-grown plants.

Teakwood has been used in the manufacture of charcoal and as fuelwood, but nowadays it is usually considered too valuable for anything but pruning remnants and other rejects to be used in this way.

Timber:  A rare combination of superior physical and mechanical properties makes T. grandis a paragon of timber, and there is no likelihood of it being eclipsed by any other. The wood is a medium weight timber that is rather soft and has a characteristic appearance. The heartwood is often dull yellowish when freshly cut but turns golden brown or sometimes dark greyish-brown after exposure, often streaked grey or black. The sapwood is yellowish-white or pale yellowish-brown and up to 50 mm thick. Grain is straight, wavy or slightly interlocked, with rather coarse and uneven texture. Density of the wood is (min. 480) 610-750 (max. 850) kg/m³ at 12% mc. The wood is oily to the touch and when freshly cut has a smell reminiscent of leather.  Being classified as very resistant to teredo activity, the wood is excellent timber for bridge building and other construction in contact with water such as docks, quays, piers and floodgates in fresh water. In house building, teakwood is particularly suitable for interior and exterior joinery (windows, solid panel doors and framing) and is used for floors exposed to light to moderate pedestrian traffic. It is also used quite extensively for garden furniture. Other uses are for building poles, transmission line poles, fence posts, wallboards, beams, woodwork, boxes, musical instruments, toys, railway sleepers and railcar construction. It is brittle and therefore less suitable for articles requiring high resilience, such as tool handles and sporting goods. Its high resistance to a wide variety of chemicals makes it ideal for laboratory and kitchen tables as well as for scrubbing towers, vats, pipes and fume ducts in industrial chemical plants. The wood grains are figured well, producing an attractive veneer, which is extensively used in the manufacture of furniture and interior fittings. Teakwood is suitable for the manufacture of decorative plywood.  Larger logs are utilized for beams and sleepers, smaller ones for scantlings and battens, and thinner top ends and poles are used as round posts. Thinnings are also used for timber. The wood is very durable, difficult to preserve, saws fairly and seasons easily. For the export market, teakwood is recommended for ship decking and other constructional work in boat building. T. grandis is economically one of the most important timber tree species of Indonesia.

Tannin or dyestuff:  Both the rootbark and the young leaves produce a yellowish-brown or reddish dye, which is used for paper, clothes and matting.

Medicine:  In traditional medicine, a wood powder paste has been used against bilious headaches and swellings and internally against dermatitis or as a vermifuge. The charred wood soaked in poppy juice and made into a paste has been used to relieve the swelling of the eyelids. The bark has been used as an astringent and the wood as a hair tonic.

Ornamental:  T. grandis is occasionally cultivated in tropical countries as an ornamental for its large leaves and spreading flower clusters. The species was originally introduced into Malaysia as a roadside and ornamental tree.

Intercropping:  Soya bean mixed with T. grandis not only makes the latter grow better but also allows harvesting of the bean for food; the soya stems, roots and leaves are added to the soil as fertilizer.