Adansonia digitata

Invasive species Disclaimer

In view of the fact that some tree species are invasive, the world Agroforestry Center (ICRAF) has put in place a policy document on Invasive Alien Species, currently under draft available at Here.

For more information on this subject, please refer to
100 of the World's worst Invasive and Alien Species.




Species Index    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Multiple Criteria Search


Abelmoschus moschatus
Acacia aneura
Acacia angustissima
Acacia aulacocarpa
Acacia auriculiformis
Acacia catechu
Acacia cincinnata
Acacia crassicarpa
Acacia elatior
Acacia erioloba
Acacia etbaica
Acacia ferruginea
Acacia glauca
Acacia holosericea
Acacia karroo*
Acacia koa
Acacia laeta
Acacia lahai
Acacia leptocarpa
Acacia leucophloea
Acacia mangium
Acacia mearnsii*
Acacia melanoxylon
Acacia mellifera
Acacia nilotica subsp nilotica
Acacia pachycarpa
Acacia pennatula
Acacia polyacantha ssp. polyacantha
Acacia saligna
Acacia senegal
Acacia seyal
Acacia sieberiana
Acacia tortilis
Acacia xanthophloea
Acrocarpus fraxinifolius
Adansonia digitata
Adenanthera pavonina
Aegle marmelos
Afzelia africana
Afzelia quanzensis
Agathis macrophylla
Agathis philippinensis
Ailanthus altissima
Ailanthus excelsa
Ailanthus triphysa
Albizia adianthifolia
Albizia amara
Albizia anthelmintica
Albizia chinensis
Albizia coriaria
Albizia ferruginea
Albizia gummifera
Albizia julibrissin
Albizia lebbeck
Albizia odoratissima
Albizia procera
Albizia saman
Albizia versicolor
Albizia zygia
Aleurites moluccana
Allanblackia floribunda
Allanblackia stuhlmannii
Allanblackia ulugurensis
Alnus acuminata
Alnus cordata
Alnus japonica
Alnus nepalensis
Alnus rubra
Alphitonia zizyphoides
Alstonia boonei
Alstonia congensis
Alstonia scholaris
Altingia excelsa
Anacardium occidentale
Andira inermis
Annona cherimola
Annona muricata
Annona reticulata
Annona senegalensis
Annona squamosa
Anogeissus latifolia
Anthocephalus cadamba
Antiaris toxicaria
Antidesma bunius
Araucaria bidwillii
Araucaria cunninghamii
Arbutus unedo
Areca catechu
Arenga pinnata
Argania spinosa
Artemisia annua
Artocarpus altilis
Artocarpus camansi
Artocarpus heterophyllus
Artocarpus integer
Artocarpus lakoocha
Artocarpus mariannensis
Asimina triloba
Ateleia herbert-smithii
Aucomea klaineana
Averrhoa bilimbi
Averrhoa carambola
Azadirachta excelsa
Azadirachta indica
Azanza garckeana
Related Links
Adansonia digitata flower
© Joris de Wolf, Patrick Van Damme, Diego Van Meersschaut
Adansonia digitata fruit
© Joris de Wolf, Patrick Van Damme, Diego Van Meersschaut
Adansonia digitata bark
© Joris de Wolf, Patrick Van Damme, Diego Van Meersschaut
The baobab tree, A. digitata at the end of the dry season, Burkina Faso.
© Robert Zwahlen
Variation in fruit from single population
© Anthony Simons
Fruit showing seeds contained in white pulp
© Anthony Simons
Extraction of seeds from fruit
© James Were
Old Adansonia digitata tree in northern Namibia.
© Martien Gelens
Adansonia digitata
© Boffa, Jean-Marc

Local names:
Afrikaans (kremetartboom,kremetart), Arabic (teidoum,tebeldi,tabaldi,gungole (fruit),humier (fruit),hamao,hamaraya), Bemba (mubuyu), Creole (mapou zombi), English (lemonade tree,guinea tamarind,cream-of-tartar tree,monkey bread tree,baobab,sour gourd,ups

Adansonia digitata is a large, round canopied tree with a swollen trunk, about 10-25 m in height, often with a bole of 3-10 m (giant individuals attain a girth of up to 28 m); bark is soft, smooth, fibrous, reddish-brown, greyish-brown or purplish-grey; bark of leaf-bearing branches is normally ashy on the last node; a green layer below the outer, waxy layer of the bark, presumably to assist in photosynthesis when the tree has shed its leaves.

The thick, fibrous bark is remarkably fire resistant, and even if the interior is completely burnt out, the tree continues to live. Regrowth after fire results in a thickened, uneven integument that gives the tree its gnarled appearance resembling an elephant’s skin but that serves as added protection against fire.

Mature thick and extensive lateral roots anchor the tree on the ground and end in clusters of potatolike tubers; the thick, strong, prominent taproot at 6 months is 3 times the length of the seedling; roots grow fast but never penetrate far beyond a depth of 2 m, which explains why in old age they are often found toppled when the branches increase in weight.

Leaves alternate, digitately 3- to 9-foliate; leaflets oblong to ovate, 5-15 x 3-7 cm, lower leaflets being the smallest and terminal leaflet the largest; leaflets dark green, with short, soft hairs; lateral veins looping; apex and base tapering; margin entire; petiolules absent or almost so; petiole up to 12 cm long.

Flowers a waxy white, up to 20 cm in diameter, axillary, solitary, pendulous, bisexual; all floral parts in 5s; calyx deeply lobed, with white, silky hairs inside; large, crinkly, spreading petals; many stamens on a large central column that is shed with the petals; ovary superior, 5-10 chambered; petals bruise easily and become brown; flowers have an unpleasant scent.

Fruit ovoid, 12 cm or more in length, with a hard, woody shell, covered with yellowish-grey velvety hairs, indehiscent; seeds smooth, embedded in a whitish powdery pulp, have little or no endosperm.

The name commemorates the French botanist Michel Adanson (1727-1806), who lived in Senegal for 6 years and wrote a work on that country’s natural history. Linneaus dedicated the genus and species to him; ‘digitata’ means hand shaped, referring to the shape of the leaf.

Ecology

The tree is characteristic of thorn woodlands of the African savannahs, which are characterized by low altitudes with 4-10 dry months a year split into 1 or 2 periods. A. digitata is resistant to fire, termite and drought, and prefers a high watertable. It occurs as isolated individuals or grouped in clumps irrespective of soil type. It is not found in areas of deep sand, presumably because it is unable to obtain sufficient anchorage and moisture. A. digitata is very sensitive to waterlogging and  frost. All A. digitata locations can be described as arid and semi-arid, with not more than a day  frost per year.

Native range
Angola, Botswana, Burkina Faso, Cameroon, Chad, Congo, Eritrea, Ethiopia, Gambia, Ghana, Kenya, Mali, Mozambique, Namibia, Niger, Nigeria, Senegal, Somalia, South Africa, Sudan, Tanzania, Togo, Zambia, Zimbabwe

Tree management

Once established, the seedlings grow well, becoming 2 m tall in 2 years, and 7 m tall in 10 years. The tree then grows slowly but lives long; under favourable conditions some A. digitata may live for more than 1000 years. There is a prehistoric drawing of an A. digitata tree at the National Museums of Kenya. The trunk may even shrink during periods of severe drought. A. digitata may be pollarded or lopped to encourage abundance of leaves.

Seeds are probably orthodox; no loss in viability during 1 year of hermetic storage at 4 deg. C; viability can be maintained for several years in hermetic storage at 3 deg. C with 8-11% mc. There are normally 2000-3000 seeds/kg.

The tree is characteristic of thorn woodlands of the African savannahs, which are characterized by low altitudes with 4-10 dry months a year split into 1 or 2 periods. A. digitata is resistant to fire, termite and drought, and prefers a high watertable. It occurs as isolated individuals or grouped in clumps irrespective of soil type. It is not found in areas of deep sand, presumably because it is unable to obtain sufficient anchorage and moisture. A. digitata is very sensitive to waterlogging and  frost. All A. digitata locations can be described as arid and semi-arid, with not more than a day  frost per year.

One of the most common ways of natural regeneration is when the fruits fall off the tree and crack. Ants enter the fruit and feed on the pulp. In this way, soil is introduced into the fruit and it becomes moist with the onset of the rains, thereby allowing germination to take place.

Artificial propagation is by direct sowing of the seed. Pretreatment is not necessary. However, germination is more successful if the seeds are nicked or boiling water is poured on them, after which they are left to soak for 24 hours. Soaking in water overnight softens the seed coat and makes water absorption for germination easy. When the seed coat is nicked it may take only 6 days to germinate. Germination is usually 90-100% and takes 1-3 months. It is preferable to sow the seed directly into the soil or straight into polythene tubes. It is advisable to prune the roots only twice before planting out.

Poison:  The bark is boiled for days to extract a substance poisonous to ants. Fruit pulp burns with an acrid, irritating smoke that can be used to deter insects troublesome to livestock.

  An edible white, powdery pulp found in the fruit is very rich in vitamin C and B2 and makes a refreshing drink. Ripe fruits are collected and cracked to remove the ‘flour’, which is mixed with milk to prepare a flavoured fermented porridge. Young leaves are also rich in Vitamin C, contain uronic acids, and are high in demand in West Africa as a soup vegetable. In Ferlo, North Senegal, an extract of the leaves, called ‘lalo’, is used to give couscous (millet porridge) a smooth consistency. The leaves also form an excellent condiment and seasoning. The small stem and roots of the seedlings are eaten as vegetable; mature, thick roots are cooked and eaten during famine. A root decoction is widely used in Sierra Leone as food. It is prepared by boiling, roasting, soaking or fermenting the roots, and tastes like almonds. Having a high water content, the wood is chewed by humans and animals in case of extreme water scarcity. The wood can be used as a salt substitute. The acid pith is used as a substitute for cream of tartar in baking, to curdle milk and smoke fish. It is also roasted and used as a coffee substitute. The seeds contain appreciable quantities of tartaric acid and potassium bitar; they are refreshing to suck, and when soaked in water make a palatable drink.

Young leaves, fruit, pods and seeds provide fodder for game and domestic animals. During drought, donkeys and game animals chew both the bark and fibrous wood for sap. Livestock and game often destroy young trees.

Apiculture:  The tree is a source of fine quality honey. Wild bees manage to perforate the soft wood and lodge their honey in the holes. In many parts of Africa, the hollow trunks are used for beekeeping.

The long-fibred wood is suitable for firewood. The shell and seeds are also used for fuel, which potters use to smooth earthenware necklaces before firing.

Fibre: The bark from the lower part of the stem of younger trees and of the roots can be removed to produce a valuable fibre. If managed properly the trees are not seriously damaged, and even after repeated use the bark regenerates and can be stripped again some years later. It is used to make excellent cordage, ropes, harness straps, mats, snares and fishing lines, fibre cloth, musical instrument strings tethers, bed-springs and bow strings. In both Senegal and Ethiopia, the fibres are woven into waterproof hats that may also serve as drinking vessels. The fibre is the best for making the famous ‘kiondo’ baskets of Kenya. Strong, tough and tear-resistant paper is produced from the fibre. It is commercially exploited in India for currency notes.

Timber:  The wood is whitish, spongy and light (air-dried 320 kg/cubic m). It is used for making canoes, rafts, insulating boards, wooden platters and trays, boxes and floats for fishing nets.

Tannin or dyestuff:  The wood contains some tannins, and the acid pith is used to coagulate rubber. In East Africa, the roots produce a useful red dye.

Lipids:  A non-drying, golden yellow oil of agreeable taste, which is used in gala occasions in Senegal, may be obtained by distilling the seeds. In Bicha and Mondo villages in Tanzania, A. digitata seeds are used as a substitute for cooking oil.

Medicine:  Hyposensitive and antihistamine properties are present in the leaves, which are used to treat kidney and bladder diseases, asthma, general fatigue, diarrhoea, insect bites, and guinea worm. Leaf and flower infusions are valued for respiratory problems, digestive disorders and eye inflammation. The seed paste is used for curing tooth and gum diseases. The fruit pulp, seed and bark are reputedly an antidote to Strophanthus poisoning. Gum from the bark is used for cleansing sores. It is also used as an expectorant and a diaphoretic. The bark is used in steam baths for calming shivering and high fever. A decoction of the roots is taken as a remedy for lassitude impotence and kwashiorkor. The bark is boiled and taken as a cure for body pains. This infusion is also used to treat colds, fever and influenza. Seeds are used to cure gastric, kidney and joint diseases; they are roasted then ground and the powder smeared on the affected part or drunk in water.

Gum or resin:  Glue can be made by mixing flower pollen with water.

Ornamental:  A. digitata is a popular species for bonsai specimens. The South African ‘Baobab Style’ originated with A. digitata.

Soil improver:  Decaying wood of a tree that has died of old age or from lightning is spread on fields as a fertilizer. Ashes from the shell, bark and seed are rich in potash and are useful as a fertilizer.

Alcohol:  The Wasandawe of Tanzania use the liquid from the pulp for brewing beer, as do the Akamba people of Kenya, who use the seed pulp as fermenting agent in some local beer.

Other services:  In dry regions, A. digitata plays a vital role in water storage; a hollowed trunk may be carved out in 3-4 days. A medium-sized tree may hold 400 gallons while a large tree could contain over 2000 gallons, and water stored in them is said