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Abstract

Characterization of decomposition characteristics is important for sound management of organic residues
for both soils and livestock, but routine residue quality analysis is hindered by slow and costly laboratory
methods. This study tested the accuracy and repeatability of near-infrared spectroscopy (NIR) for direct
prediction of in vitro dry matter digestibility (IVDMD) and C and N mineralization for a diverse range of
organic materials (mostly crop and tree residues) of varying quality (n = 32). The residue samples were
aerobically incubated in a sandy soil and amounts of C and N mineralized determined after 28 days.
IVDMD and quality attributes were determined using wet chemistry methods. Repeatability was higher
with NIR than the original wet chemistry methods: on average NIR halved the measurement standard
deviation. NIR predicted IVDMD and C and N mineralization more accurately than models based on wet
chemical analysis of residue quality attributes: reduction in root mean square error of prediction with NIR,
compared with using quality attributes, was IVDMD, 6%; C mineralization after 28 days, 8%; and N
mineralization after 28 days, 8%. Cross-validated r* values for measured wet chemistry vs. NIR-predicted
values were: IVDMD, 0.88; C mineralization, 0.82; and N mineralization, 0.87. Direct prediction of
decomposition and mineralization from NIR is faster, more accurate and more repeatable than prediction
from residue quality attributes determined using wet chemistry. Further research should be directed to-
wards establishment of diverse NIR calibration libraries under controlled conditions and direct calibration
of soil quality, crop and livestock responses in the field to NIR characteristics of residues.

Introduction

Organic residues constitute a major source of
nutrient inputs to both soils and livestock in small-
holder tropical production systems. The quality of
residues regulates the potential rate of decomposi-
tion and availability of those nutrients, both in the
soil and in the rumen. Actual rate and degree of
decomposition are moderated by the local activity
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of the decomposer organisms and the environmen-
tal conditions, but residue quality is one of the fac-
tors most amenable to management in agricultural
systems (Giller and Cadisch, 1997; Heal et al.,
1997). From a synthesis of results from short-term
incubation experiments with organic residues,
Palm et al. (2001) developed a decision support
model for predicting decomposition and net N
mineralization/immobilization rates of organic
residues from their concentrations of N, lignin and
polyphenol. To provide a basis for more system-
atic development of predictive models, Palm et al.
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(2001) compiled the Organic Resource Database,
which is a synthesis of data on quality characteris-
tics of plant residues (including macronutrient, lig-
nin, total soluble polyphenol concentrations) and
decomposition behavior in soils. Short-term (28-
day) incubation experiments using a diverse selec-
tion (n = 32) of archived samples (mainly crop
and tree residues) associated with the database
(the same set of samples used for this study), con-
firmed the relation between C and N mineraliza-
tion rates and N and polyphenol concentrations
(Vanlauwe et al., 2005).

NIR has developed rapidly over the last sev-
eral decades as a fast and robust analytical meth-
odology and it is now used for the analysis of
many agricultural and food products (Roberts
et al., 2004). Although NIR has been used exten-
sively for the analysis of forages, including deter-
mination of crude protein, lignin and digestibility
(Roberts et al., 2004), there has been little work
on NIR prediction of plant residue quality for
soil improvement. Because the basic quality attri-
butes determining decomposition and N release
are the same in the soil as in the rumen, we ex-
pect NIR to predict decomposition well in soils.
NIR analysis of manure quality, including N and
lignin concentrations, has been demonstrated (e.g.
Malley et al., 2002; Reeves et al., 2002). For a
wide range of organic residues from a temperate
region (n = 249), Stenberg et al. (2004) showed
stable NIR calibrations for C and N fractions
obtained by stepwise chemical digestion. In tropi-
cal regions, using a large collection (319 samples)
of organic residues from the Organic Resource
Database, Shepherd et al. (2003) demonstrated
NIR analysis of N, total soluble polyphenol and
lignin concentration across a wide range of
residue types (including crop residues, leafy and
woody tree residues, and animal manures) and
residue attribute values. However, there have been
few studies on NIR prediction of decomposition
and N mineralization of residues in soils (Bruun
et al., 2005; Gillon et al., 1999).

The utility of NIR as a rapid analytical tool
depends on errors in relation to the intended
application. Error in NIR analysis is associated
with accuracy, repeatability, and reproducibility
(Workman and Shenk, 2004). Accuracy is the
agreement between the NIR predicted value and
the reference (wet chemistry) method. Repeatabil-
ity is the agreement between NIR results for the

same sample analyzed repeatedly by the same
method, instrument and team of operators.
Reproducibility is the agreement between NIR re-
sults for the same sample analyzed on different
instruments or in different laboratories. The
repeatability of NIR analysis is usually excellent
(coefficients of variability <1.5%) and often su-
perior to that of wet chemistry methods (Wil-
liams and Norris, 2001). For this reason it is
theoretically possible for NIR calibration equa-
tions to produce predictions that are more accu-
rate than the laboratory reference values used in
the calibration set (Naes et al., 2002). Accuracy
of NIR to determine a reference value is limited
by the noise in the reference and the adequacy of
the mathematical model. If the reference method
is unbiased, and a good linear calibration model
is achieved, increasing the number of calibration
samples averages out errors in the reference.
Therefore, the lack of repeatability in the refer-
ence method can be compensated for by using
many calibration samples, with the result that the
accuracy of the calibration method is better than
that of the reference (Naes et al., 2002). Although
very few studies have tested this possibility, Aast-
veit and Marum (1991) found that NIR predicted
digestibility of fodder grasses more accurately
than the in vitro reference method. Furthermore,
we can expect that functional attributes, such as
decomposition, may be predicted more accurately
by NIR than from predictive models based on
wet chemistry measurements of residue quality
attributes (e.g. lignin and polyphenol concentra-
tion). This is not only because NIR is highly
repeatable but also because it integrates broad
information on biochemical composition and thus
may include additional information on decompo-
sition than that provided by a limited number of
quality attributes determined by wet chemistry.
The broad objectives of this study were to (1)
predict organic residue quality attributes using
NIR, and (2) compare NIR with wet chemistry
reference methods for estimating residue decom-
position and mineralization. The specific objec-
tives were to (1) test the accuracy and
repeatability of NIR for direct prediction of
in vitro dry matter digestibility and C and N
mineralization of organic residues, (2) evaluate
the accuracy and repeatability of NIR for esti-
mating residue quality attributes, and (3) evalu-
ate whether NIR can predict decomposition and



mineralization of organic residues more accu-
rately than predictive models that are based on
residue quality attributes determined using wet
chemistry methods.

Materials and methods

Wet chemistry methods for residue quality

Thirty-two samples were selected from the resi-
due database, described by Palm et al. (2001), to
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represent combinations of high and low N, solu-
ble polyphenol and lignin concentrations
(Table 1). The 32 residue samples were analyzed
for quality attributes using wet chemistry meth-
ods (Figure 1). The samples consisted of crop
residues and tree prunings, one farmyard manure
sample and one sawdust sample. The materials
represent potentially available sources of organic
inputs for soil improvement in tropical farming
systems, sampled from different parts of Kenya,
and are fully described by Vanlauwe et al.
(2005).

Table 1. Selected characteristics of organic residues used in the decomposition study

No. Species Plant part C N Sol C* PP® PBC*® Lignin
gkg™!
1 Zea mays Stover 413 6 48 11 15 46
2 Croton megalorapus Leaves 416 34 75 31 36 87
3 Senna spectabilis Leaflets 443 42 119 27 19 82
4 Lantana camara Leaves 410 34 84 62 48 116
5 Calliandra calothyrsus Leaflets 445 41 76 95 164 88
6 Senna siamea Leaflets 449 29 98 72 24 113
7 Crotalaria ochroleuca Leaflets 455 53 104 31 22 36
8 Crotalaria grahamiana Leaflets 378 34 101 28 21 48
9 Tithonia diversifolia Leaves 398 33 92 60 29 82
10 Gliricidia sepium Leaflets 437 38 138 29 29 108
11 Gliricidia sepium Leaflets 405 36 119 26 21 157
12 Senna siamea Leaflets 436 20 119 81 22 104
13 Flemingia macrophylla Leaflets 404 29 114 86 171 16
14 Senna spectabilis Leaflets 465 34 129 37 12 96
15 Calliandra calothyrsus Leaves 438 30 114 140 295 98
16 Calliandra calothyrsus Leaflets 419 35 92 100 118 145
17 Calliandra calothyrsus Leaves 464 30 128 145 288 62
18 Calliandra calothyrsus Leaflets 463 31 120 148 322 121
19 Calliandra calothyrsus Leaves 451 26 104 123 280 129
20 Calliandra calothyrsus Leaflets 445 32 95 95 198 158
21 Saccharum officinarum Stover 402 12 49 15 19 47
22 Lantana camara Leaves 437 45 85 52 13 62
23 Lantana camara Stems 426 10 31 15 21 164
24 Cattle manure - 370 25 37 10 48 173
25 Tithonia diversifolia Leaves 377 42 95 48 24 46
26 Gliricidia sepium Stems 421 16 50 13 26 204
27 Senna spectabilis Leaves 455 46 99 19 26 113
28 Sesbania sesban Leaves 370 45 151 23 30 25
29 Gliricidia sepium Leaflets 407 38 116 35 34 167
30 Sesbania sesban Stems 444 8 32 8 25 151
31 Eucalyptus saligna Leaf litter 461 10 89 108 183 237
32 Eucalyptus saligna Sawdust 486 1 14 17 20 295
“Soluble C.

®Soluble polyphenol.
“Protein binding capacity measured as bovin serum albumin.
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Figure 1. Analytical scheme for comparing models to predict residue decomposition and mineralization variables using models
based on either residue quality using wet chemistry methods or the NIR method. Arrows denote direction from independent to
dependent variables. MLR, Multiple linear regression; PLS, partial least squares regression.

Wet chemistry analysis of residue quality attri-
butes was done on oven dried materials (35 °C)
ground to pass through a 1 mm sieve. Samples
were stored in sealed polythene bags at 20 °C. N
was analyzed after complete oxidation of the plant
materials by Kjeldahl digestion using an auto
analyzer; total carbon using potassium dichro-
mate; water-soluble carbon by wet oxidation using
potassium dichromate; total soluble polyphenol
content by the Folin—Ciocalteu reagent against a
tannic acid standard after extraction with a
methanol-water mixture, reported in tannic acid
equivalents; lignin content by the acid detergent
fibre route; and protein binding capacity (PBC) of
soluble polyphenols using reaction with bovine
serum albumin (BSA). With the exception of pro-
tein binding capacity all analyses were run on
duplicate samples so as to assess error in the wet
chemistry methods. The methods are fully
described by Vanlauwe et al. (2005).

Methods for decomposition and mineralization

Residue decomposition and mineralization were
measured by aerobic incubation. A rate of residue
equivalent to 5t ha™' dry weight was incubated
for 28 days at 25°C in 50 g of sandy soil in
60 ml bottles. The soil was pre-incubated at 40%
water-holding capacity for 2 weeks prior to incu-
bation. Control soils did not receive any residues.

The bottles were placed in incubation jars (250 ml
glass bottles) containing NaOH traps, which were
used to measure CO, released during decomposi-
tion. Sufficient jars were set up to allow for four
destructive sampling times, replicated three times
(12 jars per treatment). The jars were arranged in
a completely randomized design. Jars without soil
added were used as blanks. After 3, 7, 14, and
28 days, CO, trapped in the sodium hydroxide
solution was determined by titrating the excess
base with HCI, and all NaOH traps were replaced
(except at day 28). On the same dates, three jars
per treatment were destructively sampled for
mineral N determination. Mineral N was also
determined at the beginning of the experiment.
Ammonium-N and nitrate-N in the soil was
determined after extracting fresh soil with KCIL
Nitrate N was determined through cadmium
reduction of nitrate to nitrite, and the nitrite and
ammonium N concentrations determined colori-
metrically.

To smooth noise in the decomposition data, a
standard exponential curve was fitted to the accu-
mulated C (log. transformed) and soil N concen-
trations over time for each replicate. The fitted
curves closely estimated the time trends for all
samples with no consistent bias: comparison of
predicted versus actual values gave coefficient of
determination (+*) = 0.98 and root mean square
error (RMSE) = 30 mg C kg™' for CO, evolution,



and r* = 0.97 and RMSE = 3.1 mg N kg™' for
mineral N concentration. The fitted values were
used to calculate the total amounts of C and net
N mineralized after 3 and 28 days, expressed as a
percentage of the respective initial amounts added
in the organic residues, after subtracting the
amounts mineralized in the soil controls. To char-
acterize the early decomposition dynamics, the
amounts of C mineralized at day 3 (by which on
average 46% of the total C released had oc-
curred; range 13-65%) were expressed as a per-
centage of the amounts mineralized at day 28 as
described by Vanlauwe et al. (2005).

In vitro dry matter digestibility (IVDMD), a
laboratory assay commonly used as a quality in-
dex for animal feed by animal nutritionists, was
determined using standard methods as described
by Vanlauwe et al. (2005). During the first diges-
tion phase, organic residues were incubated for a
48-h period at 39 °C, under anaerobic condi-
tions, with rumen liquor and microorganisms.
This was followed by a 24-h acid/pepsin diges-
tion phase that maintained the same temperature
and anaerobic conditions. Oven-dry weight of
plant material remaining and their ash contents
were then determined. Control bottles followed
exactly the same procedure but were incubated
without plant material. IVDMD was calculated
as dry matter as a percentage of the original dry
matter on an ash-free basis. The procedure was
done on two replicate samples to assess error in
the wet chemistry method.

Near infrared reflectance measurements and
preprocessing

Diffuse reflectance spectra were recorded for four
replicate sub-samples of each residue sample
using a FieldSpecTM FR spectroradiometer
(Analytical Spectral Devices Inc, Boulder, CO) at
wavelengths from 1.0 to 2.5 um at interpolated
1 nm intervals as described by Shepherd et al.
(2003). Enough plant-sample was placed into
7.4 cm diameter Duran glass Petri dishes to give
a sample thickness of about 1 cm. The samples
were scanned through the bottom of the Petri
dishes using a high intensity source probe (Ana-
lytical Spectral Devices Inc, Boulder, CO). The
probe illuminates the sample (4.5 W halogen
lamp giving a correlated color temperature of
3000 K; WelchAllyn, Skaneatles Falls, NY) and
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collects the reflected light from a 3.5 cm diameter
sapphire window through a fiber-optic cable
from a sample area of 1.2 cm diameter.

To sample within dish variation, reflectance
spectra were recorded at two positions, succes-
sively rotating the sample dish through 90°
between readings. The average of 25 spectra (the
manufacturers default value) was recorded at
each position to minimize instrument noise.
Before reading each sample, 10 white reference
spectra were recorded using calibrated spectralon
(Labsphere®, Sutton, NH) placed in a glass Petri
dish. Reflectance readings for each wavelength
band were expressed relative to the average of
the white reference readings. With this method, a
single operator can comfortably scan several
hundred samples a day.

The raw spectral reflectance data was pre-
processed prior to statistical analysis as follows.
The density of data was reduced by selecting
every 10th-nanometer value from 1.0 to 2.5 um
to ease data handling and match the data more
closely to the spectral resolution of the instru-
ment (3—10 nm). Tests showed that there was no
loss in prediction performance compared with
using the 1-nm values. The reflectance values
were then transformed with first derivative
processing (differentiation with 2nd order poly-
nomial smoothing with a window width of
20 nm) wusing a Savitzky-Golay filter, as
described by Fearn (2000). Derivative transfor-
mation is known to minimize variation between
samples caused by variation in grinding and
optical set-up (Marten and Naes, 1989). Multipli-
cative scatter correction (used to compensate for
additive and/or multiplicative effects in spectral
data) and normalization (sample-wise scaling) of
the reflectance data (both described in Vandegin-
ste et al., 1998) did not improve calibrations and
so were not used. Three noisy bands were omit-
ted: 1.00-1.01 um due to splicing between the
individual spectrometers, and 2.50 ym due to low
signal to noise ratio (Analytical Spectral Devices
Inc., 1997) leaving 148 wavebands for analysis.

Near infrared calibration

The data from the wet chemistry methods were
calibrated against the 148 NIR reflectance wave-
bands (Figure 1) using partial least squares regres-
sion (PLS), implemented in The Unscrambler
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(Camo ASA, Oslo) software. PLS is an extension
of multiple linear regression in the form:

Y=XB+E, (1)

where Y is an n cases by m variables response
matrix, X is an n cases by p variables predictor
matrix, and B is a p by m regression coefficient
(b) matrix, and E is an error term for the model
that has the same dimensions as Y. The algo-
rithm wused is fully described in Martens and
Martens (2000).

Hold-out-one full cross-validation with jack-
knifing (Martens and Martens, 2000) was used
to evaluate the stability of the calibrations and
to ecliminate unreliable (non-significant) wave-
bands in the calibrations. In this procedure the
data set is repeatedly re-calibrated by succes-
sively deleting one sample at a time and using
the resulting model to predict the value for the
held-out sample. The RMSE is based on the dif-
ferences between the predicted and actual values,
after all the samples have been held out once.
Jack-knifing makes use of the hold-out-one
method to estimate the uncertainty variances for
the regression coefficients (Martens and Martens,
2000). A r-test is used to test the significance of
the regression coefficient for each waveband. A
variable was deleted if the uncertainty variance
was two standard deviations larger than the
regression coefficient.

Prediction success was evaluated on wet
chemistry and actual observations using 2,
RMSE and bias for the cross-validation data.
Box—Cox transformation (Box and Cox, 1964) of
the wet chemistry variables was used to obtain a
multivariate normal distribution of the data. Pre-
dicted values were first back-transformed prior to
calculating these prediction statistics.

RMSE was calculated as

n

RMSE =, |> " (5, — »:)*/n, (2)

i=1

where y; and y; are predicted and measured wet
chemistry values and # is the number of samples.
To compare RMSE between dependent variables
the ratio error range (RER) was used, which was
defined as the ratio of the range of the sample
set to RMSE.

For the tests of NIR repeatability, the cross-
validation and jack-knifing were done on sepa-

rate PLS models built for each individual residue
sub-sample, but using the wet chemistry data
averaged over replicate determinations. The pre-
dicted values from each of the four separate
models were then used to assess repeatability.
However, in all the other tests the replicated
spectral measurements were averaged before fit-
ting the models.

For the tests to assess the accuracy of the
NIR method, both the spectral data from the
four replicate sub-samples and the wet chemistry
data from replicate determinations were averaged
before fitting the PLS models. Thus the term
‘NIR method’ used in this paper includes error
due to sub-sampling of residues for spectral mea-
surement.

Repeatability calculation

Repeatability in the wet chemistry method for the
residue quality and decomposition variables was
estimated using a mixed effects model with esti-
mation of variance components using residual
maximum likelihood, implemented in Genstat
version 6.1 (Lawes Agricultural Trust), as follows:

yij = i + &, (3)

where y is the wet chemistry variable observation
with i samples (number of organic resource sam-
ples used) and j replicates, s is the random term
for the effect of sample, and ¢ is the residual er-
ror. Total variance (Var) in the data is expressed
as:

Var(y;) = af + o2 4)

error

where o,” is the variance component for sample
and 620 is the residual variance. Repeatability
was then expressed as the residual standard devi-
ation (SD), and its standard error (SE) calculated
as:

SD = 4/0d2 (5)

error

SEvar
b
2* Vv Ggrror
where SE,,, is the standard error of 6%e;ror. SEvar
quantifies the uncertainty in the estimate of the

residual variance and is output by the Genstat
REML procedure.

SE = (6)



Repeatability of the NIR method was calcu-
lated in the same way as for the wet chemistry
methods but using the predicted values from
NIR calibrations for replicated residue sub-sam-
ples. Using these estimates, the repeatability of
NIR was then compared with the repeatability of
the wet chemistry method for the different resi-
due quality and mineralization properties.
Repeatability for PBC was not calculated as the
wet chemistry method was not replicated.

Calculations for comparing NIR and
wet chemistry accuracy

NIR could be used to increase the accuracy of
wet chemistry methods in at least two ways. In
the first scenario, a NIR calibration is performed
for an individual batch of wet chemistry samples.
The calibration line (fitted using cross-validation
to avoid over-fitting) is used to produce an ‘im-
proved’ estimate of the wet chemistry reference
values. The hypothesis is that wet chemistry data
is more likely to have outliers and has lower
repeatability than the NIR data, so errors in the
wet chemistry data can be averaged out by using
the corresponding estimates from the NIR cali-
bration line (Naes et al., 2002).

In the second scenario, a previous calibration
is used to predict the wet chemistry values. The
hypothesis in this case is that use of a previous
calibration based on many wet chemistry analyses
can compensate for the lack of repeatability in
the reference method. This assumes that the sam-
ples being predicted belong to the same popula-
tion of samples used for establishing the
calibration.

Because samples with high y-residuals in the
NIR calibration are likely to have high error in
the wet chemistry data, for both scenarios, the
NIR calibration can be additionally used as a
tool to screen samples that have seemingly high
error. These samples can then be re-analyzed by
the wet chemistry method and accuracy thereby
further improved.

Assessing the accuracy of NIR involves com-
parison of NIR results with reference results,
which themselves contain noise. Therefore when
evaluating the accuracy of NIR against the accu-
racy of the reference method, it is preferable to
subtract out the reference error from the NIR
error term. This will give an NIR error result
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similar to the case where the reference value is
close to its true value. Thus to assess the NIR
accuracy for the two scenarios, assuming no bias
in the wet chemistry method, RMSE was cor-
rected for error in the wet chemistry method as

RMSEor = /RMSE — a2,,./r, (7)
where 670 is the residual variance in the wet
chemistry method and r is the number of wet
chemistry method replicates. To evaluate whether
NIR improved accuracy, the RMSE,,,, (or resid-
ual standard deviation) for NIR was compared
with the SD of the wet chemistry measurements
for the different residue quality and mineraliza-
tion properties.

To test the first scenario above, the corrected
RMSE for the calibration data was compared
with the SD of the wet chemistry data, because
the calibration line for the same batch of samples
is simply being used to average out errors in the
wet chemistry data. For the second scenario, the
corrected RMSE for the validation data was
compared with the SD of the wet chemistry data,
assuming that the cross-validated RMSE pro-
vides a reasonable estimate of prediction error
outside the batch. Ideally this would be done
using an independent calibration data set, but
this was not available in this study. However,
cross-validation prediction errors have often been
found to give reasonable estimates of prediction
error on new samples from the same population
as the calibration samples.

Multiple linear regression

Graphical modeling, implemented using MIM
3.1 (Edwards, 2000), was used to explore
conditional associations between mineralization
and residue quality variables and select explana-
tory variables for inclusion in multiple linear
regression (MLR) models. Graphical modeling is
a form of multivariate analysis that uses graphs
to represent models. Graphical models allow
depiction of factor associations using graphs of
arcs connecting nodes (factors) that are signifi-
cantly conditionally associated. Hence they pro-
vide a compact representation of joint
probability distributions. This method offers
important insight into variable associations that
cannot be provided by standard correlations. For
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example, pairwise correlation is frequently a spu-
rious indicator of influence within multivariate
data because of mutual dependence on a third
variable. The partial correlations which are pro-
vided by this graphical modeling method provide
better insight into pairwise influence after con-
trolling for other factors.

Box—Cox transformation (Box and Cox, 1964)
of variables was used to obtain a multivariate
normal distribution of the data. Replicate labo-
ratory measurements were averaged before analy-
sis. Starting with saturated models, in which arcs
connect all variables with each other, stepwise
deletion was used to iteratively remove those arcs
for which conditional associations were non-sig-
nificant. Standard F-tests were used as the dele-
tion criterion. This is an empirical procedure for
variable selection and there is no objective way
of setting the F-test criteria. However the proce-
dure enables weak associations and conditional
independence between variables to be identified
to produce a parsimonious model.

Significant (P = 0.05) associations between
decomposition and mineralization and residue
quality variables were used as a basis to select
quality variables for inclusion in MLR models,
which were implemented in The Unscrambler soft-
ware using full hold-out-one cross-validation. Inde-
pendent variables with non-significant (P = 0.05)
regression coefficients were omitted. Performance
of models predicting decomposition and minerali-
zation from either residue quality variables (‘wet
chemistry models’) or NIR spectra (‘NIR models’)
were compared (Figure 1) in terms of cross-
validation r* and RMSE values.

Results and discussion

Residue quality and decomposition prediction
using NIR

NIR gave high accuracy in prediction of N con-
centration despite the wide range of materials
used (Table 2 and Figure 2), and reasonable
accuracy for polyphenol and soluble C. Predic-
tions for lignin, carbon and PBC would be ade-
quate for separating samples into broad classes.
The high r* values for PBC (Table 2) are a
result of clustering of the data into two groups
(Figure 2), and the scatter in actual vs. pre-
dicted values was high in the high range. These
results for N, polyphenol and lignin are consis-
tent with those obtained for a larger set of sam-
ples (n = 319) from the same library (Shepherd
et al., 2003). For a wide range of temperate
organic residues, Stenberg et al. (2004) also
obtained comparably robust NIR calibrations
for N (cross-validated RMSE = 29, RER =
20). Few attempts have been made to calibrate
plant N concentration across a wide range of
organic residues, and although RMSE values in
our studies are typically two to three times
larger than for more narrow-based forage cali-
brations, the RER values are similar (Stenberg
et al., 2004). Stenberg et al. (2004) considered
their soluble C calibrations to be unstable
(cross-validated RMSE = 28, RER= 8) and
their RMSE was more than double that of our
calibration, although their range was also larger
so that RER values in the two studies were also
similar. Stenberg et al. (2004) obtained better

Table 2. Statistics for full cross-validation models for predicting residue wet chemistry values from near infrared reflectance

Wet chemistry method® Mean No. PLS factors® 2 RMSE* RER¢
C, gkg! 428 4 0.76 14.4 6.6
N, g kg™ 29.6 4 0.97 2.06 23.0
Polyphenol, g kg™ 559 5 0.93 11.1 12.6
Lignin, g kg™ 116 8 0.70 32.6 6.5
Soluble C, g kg™! 91.2 3 0.84 13.4 8.9
PBC, g BSA kg™ 81.3 3 0.91 29.5 10.5

Both replicate spectral sub-samples and replicate wet chemistry measurements were averaged before fitting the models.
4BSA, bovin serum albumin; IVDMD, in vitro dry matter digestibility; PBC, protein binding capacity.

PLS, partial least squares regression.
‘RMSE, root mean square €rror.
dRER, range in wet chemistry method per unit RMSE.
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Figure 2. Scatterplots of wet chemistry values against NIR predicted values for residue quality variables. The NIR predicted val-
ues were obtained using hold-out-one, full cross-validation. The 1:1 line is also shown. Both replicate spectral sub-samples and rep-
licate wet chemistry methods were averaged before fitting the models. PBC is protein binding capacity in units of bovin serum

albumin (BSA).

prediction performance for lignin C (cross-vali-
dated RMSE = 10, RER=10) than we did for
total lignin (RMSE = 33, RER = 6). Joffre
et al. (1992) also demonstrated good NIR cali-
brations for C and N for the litter of eight spe-
cies of evergreen and deciduous trees, conifers
and shrubs.

The PLS models relating the decomposition
and mineralization variables to NIR also

produced robust predictive models (Table 3 —
NIR columns, and Figure 3). The robust NIR
calibrations for IVDMD are in agreement with a
number of previous studies, which have demon-
strated NIR prediction of IVDMD with high r?
and low error (Roberts et al., 2004).

Large and significant absolute regression coef-
ficients occurred at wavelengths 1.43, 1.65, 1.68,
1.94, and 2.12 um for C mineralization and 1.48,
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1.70, 1.72, 1.93, 2.06, 2.15, and 2.29 um for N
mineralization (Figure 4). The diagnostic bands
for C mineralization corresponded with those
associated with the dependent residue quality
variables: the bands at 1.43 and 1.94 um corre-
sponded with dominant bands in the PLS model
for soluble C (not shown), and the 1.65 um band
is closely associated with total soluble polyphe-
nols (Shepherd et al.,, 2003). Although the
1.68 um band has been reported to be associated
with lignin (Shenk et al., 2001), it was not a sig-
nificant band in the lignin PLS model in this
study. The diagnostic bands for N mineralization
were closely associated with those for residue N,
in agreement with the MLR model, as previously
reported (Shepherd et al., 2003).

By demonstrating good calibration of C and
N mineralization across a wide range of residue
qualities our results generally support the find-
ings of the few previous studies conducted on
calibration of mineralization of organic residues
to NIR (Bruun et al., 2005; Gillon et al., 1993,
1999; Joffre et al. 2001). Gillon et al. (1999) incu-
bated 34 litter samples of diverse biochemical
composition in microcosms for 8 weeks. They
found that the amount of litter weight loss at dif-
ferent sampling times and the decomposition
exponential decay constant were strongly related
to the NIR reflectance of the initial residues.

Using a set of 1235 samples of litter, Joffre
et al. (2001) showed how NIR analysis of initial

»
>

Figure 3. Scatter plots of wet chemistry values against NIR
predicted values for residue decomposition and mineralization
variables for (left column) models using residue wet chemistry
methods and (right column) models using the NIR method.
The predicted values for both methods were obtained using
hold-out-one, full cross-validation. The 1:1 line is also shown.
Both replicate spectral sub-samples and replicate wet chemis-
try methods were averaged before fitting the models. IV-
DMD, in vitro dry matter digestibility; C,g mineralization,
amount of C mineralized after 28 days incubation adjusted
for soil control, expressed as % of added residue C; C; min-
eralization ratio, amount of C mineralized at day 3 as a pro-
portion of C mineralized at day 28; Nyg mineralization,
amount of net N mineralized after 28 days incubation ad-
justed for soil control, expressed as % of added residue N.

litter quality can be related to a theoretical litter
organic matter quality. The theoretical frame-
work considers decomposition as a continuous
change in litter quality and a loss of total car-
bon. Organic matter quality is defined as a mea-
sure of substrate availability to the decomposer
community, and can be related to the number of
enzymatic steps required to release a carbon
atom from an organic compound (Agren and
Bosatta, 1996). Experimentally, the initial quality
of litter was calculated from mass loss data
during decomposition, whereby the percent
remaining carbon in a litter at a given time is a
function of the ratio of the quality of litter at
that time to the initial littler quality. Joffre et al.
(2001) demonstrated that the amount of ash-free
litter remaining at any time, adjusted for species

Table 3. Prediction of decomposition and mineralization of organic residues using either residue quality variables based on wet

chemistry methods or NIR models

Decomposition variable® Mean ”

RMSE® RER®

Wet chemistry

NIR Wet chemistry NIR

Wet chemistry NIR

IVDMD, % 48.3 0.87
C,g mineralization, % 31.8 0.78
C; mineralization ratio, % 46.4 0.78
N,g mineralization, % -6.514 0.86

0.88 6.40 6.03 9.6 10.2
0.82 5.30 4.87 7.5 8.2
0.88 6.40 4.66 5.5 7.6
0.87 15.4 14.2 9.4 10.2

Cross-validated multiple linear regression models were used for the wet chemistry method models and cross-validated partial least
squares regression models for the NIR models. Validation statistics are shown. Replicate spectral measurements and replicate
decomposition/mineralization measurements were averaged before fitting the models.

IVDMD, in vitro dry matter digestibility; C,g mineralization, amount of C mineralized after 28 days incubation adjusted for soil
control, expressed as % of added residue C; C; mineralization ratio, amount of C mineralized at day 3 as a proportion of C mineralized
at day 28; N»g mineralization, amount of net N mineralized after 28 days incubation adjusted for soil control, expressed as % of added

residue N.

bRMSE, root mean square error.

‘RER, range in wet chemistry method per unit RMSE.
9Range —120.5 to 38.4.
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Figure 4. Partial least squares regression (b) coefficients against wavelength for prediction of C and N mineralization from NIR
spectra. Significant (P = 0.05) coefficients were identified by jack-knifing using full hold-out-one cross-validation.

using a single parameter, could be calibrated well
(validation r» = 0.94) to NIR. NIR was found
to provide much better prediction of decomposi-
tion than using three chemical fractions. This
was attributed to the rich information on bio-

chemical composition than can be obtained from
NIR spectra compared with elemental analysis.
Bruun et al. (2005) in an incubation experi-
ment using materials from a wide range of agri-
cultural plants and plant parts from Europe,



found as in our study that NIR was able to pre-
dict C mineralization patterns well (validation
r* = 0.92), but results were poorer for N miner-
alization (#* = 0.45) compared with our results.
As noted by Bruun et al. (2005), net N minerali-
zation, being the result of mineralization and
immobilization processes, is a more complex pro-
cess than C mineralization and therefore more
easily influenced by external factors and experi-
mental conditions. For example in their study
nitrogen was added to avoid nitrogen limitation
of micro-organisms, which was not done in our
study.

NIR repeatability

NIR repeatability always exceeded the repeatability
of the wet chemistry method (Table 4) despite the
possibility of variation in sample packing density
in the sample holders with the NIR method used
(samples scanned in open Petri dishes). A similar
conclusion was reached for studies on IVDMD of
forage samples by Aastveit and Marum (1991),
who obtained a SD of 1.24 for the wet chemistry
method and 0.35 for NIR, although over a narrow
range of IVDMD (67-82%) compared with this
study (7-82%). Serensen (2002), using silage sam-
ples, reported a SD of 1.7 for three replicate analy-
ses of IVDMD determined on different days
(although NIR analysis was performed on the
same sub-sample as the wet chemistry method)
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which is comparable with our wet chemistry SD
value of 2.0. The improvements in repeatability
with NIR were greatest (>50% reduction in SD)
for C, N, lignin, and C mineralization. The repli-
cate wet chemistry methods were conducted within
the same batch in this study, but measurement er-
ror would be expected to be higher if different bat-
ches analyzed over longer time periods were
considered. Batch-to-batch variation within the
same laboratory is typically much higher for wet
chemistry methods than for NIR (e.g. Aastveit and
Marum, 1991).

NIR accuracy relative to wet chemistry methods

Using the NIR calibration values to smooth the
wet chemistry data improved accuracy of the wet
chemistry method for C, N, and lignin concen-
trations, and C mineralization (Table 4). For C
and N concentration, the improvement was large
in absolute terms (> 60% reduction in SD). Thus
using NIR in combination with these methods
could lead to higher accuracy than using the wet
chemistry method alone.

Using the NIR validation values to simulate
use of a previous calibration to estimate the wet
chemistry values (Table 4), NIR significantly im-
proved the accuracy of the original wet chemistry
method for C (by 33%) and N concentration (by
5%) but not for the other variables. Across all
variables, SD values for NIR were 0.67 to 3.3

Table 4. Repeatability and accuracy of wet chemistry and NIR methods for determination of residue quality and mineralization

properties
Wet chemistry method® Min Max NIR SD Wet chemistry NIR RMSE,,;; NIR RMSE,,,,
SD calibration validation

C, g kg 370 486 3.8 (0.33) 14.8 (1.85) 2.67 9.89

N, g kg™ 1.4 53.2 0.70 (0.062) 1.74 (0.217) 0.69 1.65
Polyphenols, g kg™ 8.4 148 3.56 (0.316) 5.33 (0.667) 6.13 10.4
Lignin, g kg™ 25.4 295 5.7 (0.51) 16.9 (2.11) 9.71 30.3
Soluble C, g kg™ 14.0 151 2.40 (0.212) 4.02 (0.503) 11.0 13.1
IVDMD, % 7.0 82.4 1.85 (0.164) 1.99 (0.249) 3.74 5.86

C,g mineralization, % 3.7 56.5 1.08 (0.095) 3.41 (0.305) 2.43 4.45

N,g mineralization, % -120.5 38.4 4.40 (0.388) 6.17 (0.545) 11.9 13.7

To evaluate repeatability for the two methods, compare NIR standard deviation (SD) with wet chemistry SD. To evaluate accuracy for
the two methods, compare wet chemistry SD with NIR error corrected root mean square error (RMSE,,,,) using either calibration
results (Scenario 1: within batch calibration) or validation results (Scenario 2: previous calibration). Standard errors are given in

parentheses.

IVDMD, in vitro dry matter digestibility; C,g mineralization, amount of C mineralized after 28 days incubation adjusted for soil
control, expressed as % of added residue C; N,g mineralization, amount of net N mineralized after 28 days incubation adjusted for soil
control, expressed as % of added residue N.
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times higher than the wet chemistry method.
Serensen (2002) reported for IVDMD in silage
samples that NIR prediction error estimated by
cross-validation for samples from the same popu-
lation gave a relatively precise estimate of the
prediction error on completely independent test
samples collected after the calibration period.
However, further studies using independent sam-
ple sets are needed to objectively assess potential
improvements in accuracy of NIR compared
with wet chemistry methods when previous cali-
brations outside the batch are used.

The results suggest that using NIR in conjunc-
tion with the wet chemistry method within the
same batch of samples could be useful for detec-
tion of outliers due to measurement error in the
wet chemistry data. However, this strategy would
not work if the whole batch was in error, caused
for example by variation due to different opera-
tors or over time within the same laboratory.

The prospects for improving accuracy of the
wet chemistry reference method using previous
NIR calibrations showed less promise, although
this strategy may be useful as a screening tool to
detect drift in wet chemistry analyses over time or
between different operators or laboratories.
Environmental factors (e.g. temperature, humid-
ity) will affect NIR repeatability over time and
transfer of calibrations across NIR instruments
between laboratories is also a source of error in
the NIR method. Although variation over time
and between laboratories is expected to be greater
for wet chemistry methods than for the NIR
method, NIR also requires calibration data sets
that adequately sample the full variation in condi-
tions to be expected, and this may be challenging
for decomposition and mineralization incubations,
which are easily influenced by environmental and
experimental factors. However, where good cali-
brations can be obtained for standardized wet
chemistry methods, for example as in this case for
residue total N, large centralized calibration
libraries would be feasible and could be used for
continuous quality control in wet chemistry labo-
ratories.

Residue decomposition prediction using wet
chemistry methods

The graphical model used to select residue quality
variables for prediction of mineralization and

decomposition variables is shown in Figure 5. Al-
though C and N mineralization and IVDMD were
highly inter-correlated, the three variables were
statistically independent when residue quality
variables were included in the model. IVDMD
was shown to be dependent on C, N, polyphenol,
lignin, soluble C, and PBC concentrations. C min-
eralization was dependent on soluble C, lignin,
and polyphenol; and N mineralization was associ-
ated with polyphenol and N. Although the condi-
tional relationships in the graphical models may
also be dependent to some extent on the errors in
the individual measurements, the relationships
agree well with previous work on the effect of resi-
due quality on decomposition. For instance, C
mineralization has been found to be positively
related to soluble C concentration and negatively
to the lignin and polyphenol concentration of the
residue (Giller and Cadisch, 1997). The fact that
C mineralization was not related to residue N
concentration suggested that N was not limiting C
release during the incubation. Our results gener-
ally support the recent findings of Jensen et al.
(2005), who found for a broad range of plant
materials and plant parts that neutral detergent
soluble C and N were among the best predictors
of decomposition and N mineralization, respec-
tively, and that these were in turn related to resi-
due total N concentration. Contrary to previous
work, they found that C/N and lignin/N ratios
had little ability to predict decomposition and N
mineralization. Soluble C and total N were impor-
tant predictors of decomposition and N minerali-
zation, respectively, in our study, although
modified by lignin and polyphenol concentrations.
The dependence of IVDMD on PBC may reflect
the influence of tannin-like polyphenols that can
provide protection against decomposition (Van-
lauwe et al., 2005).

The MLR models relating the decomposition
and mineralization variables to the residue quality
variables, measured using wet chemistry methods,
gave robust models with cross-validated r* values
for wet chemistry vs. predicted values of between
0.78 and 0.86 (‘wet chemistry’ columns in Table 3
and Figure 3). Using the same sample set,
Vanlauwe et al. (2005) observed that polyphenol
concentration also had an influence on N mineral-
ization for samples with positive values, but the
data was not partitioned in this study due to the
small number of samples for NIR calibration.
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Lignin PBC
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N2s
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C

Figure 5. Graphical model showing conditional associations between C and N mineralization and residue quality variables. Arcs
represent conditional node association at P = 0.05 significance level. C,g mineralized, amount of C mineralized after 28 days incu-
bation adjusted for soil control, expressed as % of added residue C; N,g mineralized, amount of net N mineralized after 28 days
incubation adjusted for soil control, expressed as % of added residue N; IVDMD, in vitro dry matter digestibility; PBC, protein

binding capacity.

Comparison of wet chemistry and NIR models for
predicting decomposition

For prediction of decomposition and N mineral-
ization, the NIR models had consistently higher
?, and lower RMSE values than the wet chem-
istry models, which were based on the residue
quality variables measured using wet chemistry
methods (Table 3). On average, NIR reduced
cross-validation RMSE by 12% compared with
the wet chemistry models. Note that the RMSE
term already includes error due to bias (Naes
et al., 2002). These findings generally concur
with the results of Gillon et al. (1999) and Joffre
et al., (2001) who also suggested that NIR may
predict litter decomposition more accurately
than the chemical composition of the initial
litters by standard chemical methods. This is
because NIR may capture broader information
on biochemical composition than the conven-
tional laboratory methods, provided by over-
tones and combination bands of stretching and
bending vibrations from major OH, CH and
NH groups (Shenk et al., 2001).

The reduction in error with the NIR models
was relatively even across the full range of wet
chemistry values, in terms of reduced scatter of

points about the 1:1 line in Figure 3, as opposed
to being confined to either high or low ranges.
For net N mineralization, there was more scatter
in the NIR calibration in the negative than posi-
tive range of wet chemistry values, most likely
reflecting lack of repeatability in the laboratory
measurements at very low plant nitrogen concen-
trations, but the wet chemistry method model
showed some systematic bias in the residuals in
the negative range (Figure 3).

Graphical models were further used to test
the hypothesis that given the NIR prediction of
decomposition and mineralization, the wet
chemistry methods added no further predictive
information. Thus the NIR predicted values of
decomposition were added to the graphical mod-
els of the decomposition and the dependent
quality variables (Figure 6). The initial saturated
models have arcs connecting all the nodes, but
after stepwise deletion of non-significant arcs,
only conditional relationships remain. Absence
of an arc between two variables in the model im-
plies that the two variables are independent (i.e.
independent in the conditional probability distri-
bution) given the other associations in the model
(i.e. conditional independence, Edwards, 2000).
For example, absence of an arc between the
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mineralization variable and the residue quality
variables would indicate their independence
given the inclusion of the NIR method in the
model. Therefore, if we know the NIR pre-
diction, information about the wet chemistry
variables is irrelevant for knowledge of minerali-
zation. It also follows that given the information
on the wet chemistry variables, NIR did provide
additional information on mineralization, other-
wise arcs connecting mineralization and the wet
chemistry variables would have remained after
backward deletion. In all cases (Figure 6) the
graphical models showed that the strongest asso-
ciation was between mineralization or decompo-
sition and the NIR method, and that inclusion
of wet chemistry variables provided no addi-
tional information on decomposition or mineral-
ization.

PBC
IVDMD
O Q wet chemistry
method
IVDMD
Soluble C NIR method
Lignin

C, mineralization ratio
Wet chemistry method

Soluble C NIR method

0 C; mineralization ratio

These results confer with the lower RMSE
values for the NIR models than for the wet
chemistry models for prediction of decomposition
and mineralization. Therefore the results of this
study provide strong evidence that residue
decomposition and mineralization can be deter-
mined more accurately by NIR than through pre-
dictions based on determination of residue
quality variables by wet chemistry methods. This
may be a combined result of the fact that NIR
integrates information on a larger number of bio-
chemical attributes of residues than those in-
cluded in the wet chemistry models and the
greater repeatability of NIR compared with the
wet chemistry methods themselves. However, an-
other recent study did not support our finding. In
the study of Bruun et al. (2005), NIR was able to
predict C mineralization patterns marginally bet-
ter than stepwise chemical digestion or C/N

Polyphenol C,g mineralized
Wet chemistry
method

C,s mineralized
Soluble C 28
NIR method
Lignin
N,¢ mineralized i i
Wet chemistry Nog mineralized
method NIR method
N

Figure 6. Graphical models showing conditional associations between residue quality variables, and residue decomposition or min-
eralization variables determined by the wet chemistry method and predicted by the NIR method. Arcs represent conditional node
association at P = 0.05 significance level. IVDMD, in vitro dry matter digestibility; Cpg mineralized, amount of C mineralized after
28 days incubation adjusted for soil control, expressed as % of added residue C; C3 mineralization ratio, amount of C mineralized
at day 3 as a proportion of C mineralized at day 28; N,g mineralized, amount of net N mineralized after 28 days incubation ad-

justed for soil control, expressed as % of added residue N.



ratios, but the reverse was true for prediction of
N mineralization. However, they did not test
conditional dependence assumptions. They con-
cluded that the speed and cheapness advantages
of NIR outweighed any loss in prediction accu-
racy.

An implication of these results is that NIR
calibration libraries could be used to increase
sampling efficiency and reduce analytical costs in
time consuming decomposition studies using
stratified and two-phase or double sampling
schemes (Cochran, 1977). With this approach,
NIR is used to thoroughly sample the variability
of the target material in a given area or applica-
tion. From the resulting spectral library (e.g.
Shepherd and Walsh, 2002) a subset of samples
is selected for the decomposition study, chosen to
sample the spectral diversity (e.g. based on pre-
dicted decomposition values). NIR calibrations
based on this subset of samples are then used to
predict decomposition values for the entire spec-
tral library. From this data, mixed effects vari-
ance-component models (e.g. Pinheiro and Bates,
2000) can be used to analyze the numbers of
NIR and decomposition samples required to
achieve a given level of accuracy in future
studies. Trade-offs between cost and accuracy
can then also be calculated. Used in this frame-
work, NIR can enable risk-based approaches to
soil and plant quality assessment that allow
prediction uncertainty to be incorporated in deci-
sion-making. This double sampling approach can
increase the efficiency of virtually any study
where good NIR calibrations are obtained and
precludes the need for establishment of large ref-
erence data sets, as used for example in the food
and forage industry.

However, there is need to establish standard-
ized assays for organic residue decomposition
and nutrient release characteristics to help make
results generalizable to the broadest possible
range of conditions. To achieve this there is need
to take account of not only the chemical compo-
sition of the substrate, which is what is predicted
by NIR, but also effects of temperature, humid-
ity and soil conditions on the rate of decomposi-
tion. To control for such external factors the
results of NIR should be expressed in some val-
ues that are independent of these factors, for
example using the framework suggested by Joffre
et al. (2001).
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NIR-predicted residue N concentration ap-
pears to be a useful indicator of N mineralization
potential. In our study, N mineralization was
predicted well by residue total N concentration
alone. Jensen et al. (2005) found that neutral
detergent water soluble N was the best predictor
of N mineralization, and this was also closely re-
lated to plant total N. Shepherd et al. (2003) also
demonstrated robust NIR prediction of residue
N, over a more diverse range of residue composi-
tion and origin than used in this study. The re-
sults reported here further suggest that NIR may
predict residue N to as good or better accuracy
as the wet chemistry method. Therefore diverse
centralized NIR calibration libraries for residue
N prediction would appear to be a good invest-
ment.

Conclusions

For determining residue quality attributes (as op-
posed to decomposition and mineralization vari-
ables), NIR was more precise, but generally not
more accurate than the wet chemistry reference
methods. Where high accuracy or standardiza-
tion across laboratories is required, NIR could
be usefully applied in conjunction with wet
chemistry methods to improve quality control.
Where high accuracy is not required, NIR alone
provides a rapid and cheap method for determi-
nation of residue quality.

For determination of decomposition and min-
eralization, using NIR is both more accurate and
more precise than using predictive models that
are based on litter quality attributes determined
using conventional wet chemistry methods. NIR
proved to be rapid and robust, over a wide range
of organic residue types and quality, involving
only a single measurement, whereas several wet
chemistry measurements were required to esti-
mate IVDMD and C mineralization to a similar
level of accuracy.

Potential applications of NIR include rapid
characterization of diverse organic residues for
livestock feed and as inputs for soil fertility
improvement, including animal manures, com-
posts, green manures, crop residues, and urban
organic wastes. In particular, residue N provided
a good indicator of N mineralization potential,
and therefore NIR could be readily used to
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directly characterize organic residues into the
management categories proposed by Palm et al.
(2001) in terms of fast or slow N mobilization or
immobilization.

The potential for widespread use of NIR for
measuring residue quality and decomposition
characteristics is expected to increase over the
next several years with developments towards
cheaper and more portable spectrometers, cou-
pled with more flexible software and easier cali-
bration methods. Future efforts should be
directed towards the establishment of centralized
spectral calibration libraries using standardized
methods designed to sample the widest possible
range of materials. NIR should also be used in
double sampling schemes to increase efficiency of
residue decomposition studies. Further research
should be directed towards direct calibration of
soil quality, crop and livestock responses in the
field to NIR characteristics of residues.
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