Melinda Firds Program Management Unit Assistant
World Agroforestry (ICRAF)
Jl. CIFOR, Situ Gede, Sindang Barang,
Bogor Barat - Indonesia 16115
Tel: +62 2511 8625415
Fax: +62 2511 8625416
Email: icrafseapub@cgiar.org
Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations
Author
Marleen de Blecourt, Rainer Brumme, Xu Jianchu, Marife D. Corre and Edzo Veldkamp
Year
2013
Journal Title
PLOS One
Institution
Public Library of Science
Volume
8
Issue
7
Pages
1-9
Call Number
JA0554-14
Abstract:
Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha?1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha?1 to an increase of 8 Mg C ha?1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.
Download file(s):Click icon to download/open file.