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1. INTRODUCTION 

The principal development objective of the Western Kenya Integrated Ecosystem Management 
Project (WKIEMP) is to improve the productivity and sustainability of farming systems in the Nyando, 
Yala, and Nzoia watershed catchments of the Lake Victoria basin by pursuing an integrated ecosystem 
management approach to: 1) rehabilitate degraded lands through interventions focused on improving 
soil fertility, agroforestry, and introduction of value added cropping systems; and 2) improve capacity 
for local communities, farmer associations, and national institutions to identify, formulate, and 
implement sustainable land management activities capturing local and global environmental benefits.  
The global environmental objective of the project is to promote integrated ecosystem management so 
as to capture the benefits of reduced greenhouse gas (ghg) accumulation in the atmosphere, improved 
on and off farm biodiversity, and decreased erosion in watersheds that feed into the Nyando, Yala, and 
Nzoia watersheds. Project activities will be achieved through a community driven development 
process whereby communities direct and coordinate resources for improved land management 
investments, technical assistance and implementation of ecosystem management activities.  

In contrast to purely technology-driven extension and development approaches, IEM attempts 
to reinforce positive or beneficial feedback mechanisms between biotic, soil, atmospheric and 
human/economic components of ecosystems (Fig. 1). 
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Figure 1. Causal loop diagram showing positive feedback relationships between net primary 

production (NPP), biomass, soil condition, net ecosystem production (NEP) and farm income.  

Using a variety of land management interventions, ranging from afforestation and reforestation 
activities, soil conservation and fertility management, to dissemination of value added agronomic and 
agroforestry practices, which will be identified in collaboration with local land managers, WKIEMP 
seeks to increase net primary production in currently degraded cropping, and rangeland ecosystems in 
western Kenya.  
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Net primary production (NPP, kg C m2 yr-1) is defined as the product of standing crop (~ 
Biomass, kg C m-2) and the relative growth rate (RGR, kg C kg-1 Biomass yr-1) of vegetation as: 

NPP = Biomass × RGR (1.) 

Therefore, NPP represents the total new organic matter of an ecosystem that is produced over the 
period of one year. Biomass exerts the predominant influence over NPP, with forests (and presumably 
agroforests) being more productive than shrublands or grasslands, despite their relatively lower RGR’s 
(Chapin, 1993). Individual plant traits such as mature size and growth rate influence NPP directly, and 
can be manipulated in plant communities through selection and species substitutions. Plant mortality is 
an inevitable consequence of NPP, and after plant litter is transferred to the soil, decomposition is the 
principal process determining carbon losses from ecosystems. Thus, carbon exchanges between land 
and atmosphere are largely controlled by the difference between NPP and heterotrophic respiration 
(Rh, kg C m-2 yr-1). This balance, is most commonly expressed as net ecosystem production (NEP, kg C 
m-2 yr-1) given by: 

hNEP NPP R= −  (2.) 

NEP is important because it is a measure of the annual increment of carbon stored by ecosystems. NPP 
and NEP are ultimately constrained by soil conditions1, which affect both resource availability for 
plant growth and the abundance and diversity of decomposer communities. In western Kenya rapidly 
declining soil condition over the last 100 years, as a consequence of continuous cropping in the 
absence of organic and inorganic inputs, nearly complete removal of woody vegetation, lack of soil 
conservation structures, poor and late land preparation and grazing of cattle on fragile soils is well 
documented (e.g., Buresh et al., 1997; Shepherd et al., 2001). These practices have led to downward 
spiraling system dynamics leading to declining NPP and NEP regionally, though this has never been 
quantified at a landscape scale. Moreover, though not shown in Fig. 1, soil condition, biomass and 
NPP also exert strong controls on water quality and quantity by regulating erosion/sedimentation, 
ground-water recharge and transpiration rates. Also important, economic returns to land, labor and/or 
capital from farming and livestock currently occur only as a function of biomass harvest. Therefore 
assessing change biomass has important agricultural as well as environmental implications.  

WKIEMP will also evaluate the potential to increase farm incomes through environmental 
service payments for CO2 and other greenhouse gas emission reductions. In turn, reinvestment of farm 
resources in labor and capital resources is expected to further enhance NPP in the region.  

Direct field measurement of all the above-mentioned quantities and processes remains 
somewhat problematic. In some cases, such as for example for NPP, no direct field measurement is 
currently feasible because of difficulties associated with measuring all the above- and below-ground 
components of RGR. Instead, NPP is estimated based on a suite of indicators of various types and 
underlying assumptions (see Clarke et al., 2001). Similar situations exist in the context of measuring 
NEP, soil condition, and the various socio-economic dimensions of poverty, including farm income. 
As there currently are no globally accepted standards for monitoring these quantities, this document 
describes the underlying assumptions, associated measurements and statistical modeling approaches, 
which will be tested in the context of WKIEMP activities. The document is divided into three major 
sections including: (1.) definitions of the geographic scope and operational domain of the project, (2.) 
procedures for assessing initial site conditions and calculating biophysical and socioeconomic 
baselines, and (3.) procedures for monitoring change and project impact assessment. 

                                                 
1 Soil condition here is taken as a short-hand describing the properties and characteristics of soil that promote primary 
production (Swift and Palm, 2000). 
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2. PROJECT AREA 

Forest cover (1990) 
Forest cover estimates from Dec. 31rst, 1989 are required to demonstrate that works and 

plantings undertaken in the context of projects are consistent with international rules for carbon sink 
eligibility. To meet these criteria under the current agreements (i.e., COP7),  forests (including 
agroforests) have been flexibly defined as having a minimum canopy cover of 10%, a minimum 
mature height of 2 meters, and a minimum spatial extent of 0.05 ha. Definitions of afforestation, 
reforestation and deforestation all use forest cover change criteria, with afforestation activities being 
located on lands that have not been forested for more than 50 years, and reforestation located on lands 
which have not been forested since Dec. 31rst, 1989. These definitions preclude inclusion of activities 
that involve clearing of forests after 1989 – to subsequently claim reforestation credits. Additionally, 
projects focusing on forest conservation and “forest buffer zone” agroforestry projects have to provide 
estimates of forest cover during the base year, against which subsequent changes can be evaluated.  

The Kenyan portion of the Lake Victoria Basin covers a land area of ~3.9 million ha, and to our 
knowledge no comprehensive forest inventory was ever conducted in the region in 1989. However 
recently, NASA’s Earth Science Applications Directorate has made a global dataset of Landsat 
Thematic Mapper 5 mosaics available to the public (see https://zulu.ssc.nasa.gov/mrsid). All acquired 
images date from an approximately six-month period between 1989-1990. Mosaics are provided in 
terrain corrected Universal Transverse Mercator (UTM) / World Geodetic System 1984 (WGS1984) 
projection and each cover a standard UTM zone of 6 deg. longitude, in three spectral regions (Band 7, 
Band 4 & Band 2), at 28.5 m spatial resolution. We extracted the relevant coverages for western Kenya 
and used spectral mixture analysis to estimate the ~1990 forest cover fractions for the region. An 
example, including a brief description of the applied methods, is shown in Fig. 2. We note that the 
forest cover estimates provided by this approach do not constitute a regional estimate of woody 
vegetation cover more generally, but appear to be valid for “evergreen broadleaf” forest types, based 
on what is known regarding their current distribution in western Kenya.  
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Figure 2. Extent of forest cover in the Nyando River Basin ~1990. Top image shows Landsat 5 
composite (Band 7 = red, Band 4 = green, Band 2= blue). Bottom image shows estimated forest cover 
fraction based on partial spectral unmixing.

Methods:
Forest cover has a very distinctive signature in the Landsat 5 Band 2,4,7 spectral range, and 

particularly “closed broadleaf evergreen” forest canopies are easily distinguished from non-forest cover 
types upon visual inspection (see examples top panel). Image pixel signatures from a wide range of 
visually identified forest and non-forest land cover types were extracted and posted to a database for 
analysis. The separability of different forest/non-forest types was tested statistically using linear 
discriminant analysis. Based on a 50% hold-out validation sample of 492 visually classified pixels, 
98.7% were correctly classified as “forest”, and 97.5% were correctly classified as “non-forest”. 
Incorrectly classified pixels in the validation set were subsequently screened from further analyses. 
Using the screened validation dataset, signature files were then created in the ENVI® image processing 
system (see www.rsinc.com), and the “Matched-Filtering Algorithm” was used to estimate the fraction 
of forest cover in each 28.5 × 28.5 m pixel in the image (results shown in bottom panel).
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Figure 2. Extent of forest cover in the Nyando River Basin ~1990. Top image shows Landsat 5 
composite (Band 7 = red, Band 4 = green, Band 2= blue). Bottom image shows estimated forest cover 
fraction based on partial spectral unmixing.

Methods:
Forest cover has a very distinctive signature in the Landsat 5 Band 2,4,7 spectral range, and 

particularly “closed broadleaf evergreen” forest canopies are easily distinguished from non-forest cover 
types upon visual inspection (see examples top panel). Image pixel signatures from a wide range of 
visually identified forest and non-forest land cover types were extracted and posted to a database for 
analysis. The separability of different forest/non-forest types was tested statistically using linear 
discriminant analysis. Based on a 50% hold-out validation sample of 492 visually classified pixels, 
98.7% were correctly classified as “forest”, and 97.5% were correctly classified as “non-forest”. 
Incorrectly classified pixels in the validation set were subsequently screened from further analyses. 
Using the screened validation dataset, signature files were then created in the ENVI® image processing 
system (see www.rsinc.com), and the “Matched-Filtering Algorithm” was used to estimate the fraction 
of forest cover in each 28.5 × 28.5 m pixel in the image (results shown in bottom panel).
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Gross project area 
The gross project area will include the Nyando, Yala, and Nzoia basins of the Lake Victoria 

watershed. This large area, consisting of 19,898 km2, will include specific monitoring focal areas (FA) 
which will receive detailed attention for monitoring and evaluation of project and environmental 
objectives, and the remainder of the area which will not receive the same degree of treatment but in 
which farmer/community associations have indicated that they also want to participate.   

Net Project Area 

The net project area, commonly called “the project area”, will consist of nine 10×10 km focal 
areas (FA’s) specifically designed for monitoring and evaluation. Because of the wide geographic 
dispersion and large area coverage within the region, a phased approach in implementing project 
activities is deemed necessary. The table below shows the timing for inclusion of FA’s in years 2004-
2006.  

  No. 100 km2 
FA’s 

Water-   
shed 

Area 
(km2) 

2004 2005 

Nyando 3,550 3  
Yala 3,364 3  
Nzoia 12,984  3 

To further ensure that the project area is regionally representative, allocation of FA’s within 
basins will be stratified by elevation zones including: Lowlands, 1134-1440 m, Midlands, 1440-1890 
m and Highlands ≥1890 m a.s.l. Considering the size of each FA in each elevation zone,  the FAs will 
represent 8.5% of the land area of Nyando, 8.9% of Yala a and 2.3 % of Nzoia. 

Research conducted in the context of the TransVic and other projects has demonstrated strong 
associations between this zonation and variables related to population density, land use, soil condition 
and production ecology. Examples of these relationships are summarized in Table 1. 

Focal area locations will be selected randomly, nested within basins and elevation zones, but 
subject to the following criteria: no part of any FA will impinge on 1990 baseline “forested lands” (as 
defined under section 2.1); FAs will not impinge on  large-scale commercial agricultural areas (e.g., 
rice irrigation schemes, tea estates, and sugar cane plantations); FAs will not impinge on government 
lands such as protected areas and game parks; FAs will not impinge on large wetlands or urban areas. 

The net project area (NPA) is the area in which improved land management treatments will be 
implemented, as selected by farmers, and in which the impacts of these treatments will be monitored. 
These areas will be consistent with current international rules for eligible greenhouse gas sinks. It is 
also the area over which baseline predictions are made and which will be monitored. In the context of 
this project, it is very likely that the NPA will evolve over time, as communities outside the NPA take 
benefit of the project and begin to participate.  
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1 Data from Ecosystems Ltd (1986) regional low-altitude aerial survey interpretation. 

Table 1. Indicative differences between elevation zones in western Kenya. Table 
reports 95% CI’s of mean zonal values. 

Variable Lowlands Midlands Highlands 

Housing units (no. km-2)1 111 – 142 62.3 – 85.1 23.3 – 33.5 
Ave. tree cover (ha km-2)1 8.47 – 10.0 18.7 – 22.6 23.0 – 30.6 
Tree cover on farms (ha km-2)1 2.58 – 3.39 2.30 – 3.52 0.72 – 1.13 
Cropland (ha km-2)1 14.6 – 17.9 11.1 – 15.3 8.95 – 12.6 
Commercial crops (ha km-2)1 1.12 – 1.66 1.43 – 2.04 1.51 – 2.25 
Ave. annual NDVI2 0.29 – 0.33 0.38 – 0.43 0.52 – 0.61 
pH (water)3 6.44 – 6.68 5.81 – 6.30 – 
Clay (%)3 37.1 – 42.8 29.2 – 36.4 – 
CEC3 17.3 – 21.6 11.5 – 16.8 – 
SOC (g kg-1)3 12.6 – 15.1 17.8 – 23.0 24.8 – 27.35

Steady-state infiltration (cm hr-1)4 1.67 – 3.05 5.28 – 13.0 – 

2 Normalized Difference Vegetation Index data from Africa Data Dissemination Service, 
GAC decadal time-series (1985 – 2002). 
3 Shepherd & Walsh (2002). 
4 Thine et al. (in press). 
5 Spectral library estimate. 

 

To quantify these dynamics, it is necessary to define what will determine eligibility. In terms of 
above ground carbon, we define project eligible reforestation, afforestation and agroforestry activities 
to consist of areas with a minimum contiguous spatial extent of 0.05 ha (woodlots), and subject to the 
stocking guidelines presented in the table below. 

 Minimum stocking level 
(trees ha-1) 

Stand age Total Indigenous 

Initial planting  1600  800 
3 months  1120  560 
1 year  800  400 
3 years  700  350 

Areas excluded from the NPA are any patches of existing woody vegetation, large and dense 
enough to already be considered as “forests” under the IPCC definition, which are converted to “non-
forested” areas over the course of the project. Due to spatial and spectral resolution constraints of the 
available Landsat satellite images, deciduous trees and shrubs, hedgerows and other scattered woody 
vegetation types were not captured in foregoing analyses. The distribution of other existing woody 
vegetation in focal areas will therefore be assessed using higher resolution satellite data and ground 
surveys (see section 3). Converted areas and will subsequently be “subtracted out” of any carbon sink 
credits claimed by WKIEMP participants. 

Soil carbon qualifying activities will largely focus on improving soil condition through various 
agronomic and range management measures (e.g. cover cropping with (tree) legumes or green 
manures, grazing deferment and rangeland reseeding), conservation tillage (e.g. vegetated contours 
and/or zero/minimum till practices), and agroforestry boundary plantings, etc. These practices can 
potentially sequester and/or protect significant amounts of carbon in the soil, as well as reduce 
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emissions of non-CO2 greenhouse gases. However, the potential magnitude of these emission 
reductions is currently unknown and will therefore be monitored. For the most part, it will not be 
possible to determine the aerial extent or monitor the adoption of these activities using remote sensing 
data. Instead Section 4 discusses how this will be accomplished using systematic GPS surveys. 

 

Figure 3: 0.7 m resolution true color aerial photograph of a portion of the Ebukanga catchment in 
western Kenya; below image processed to highlight the distribution of woody vegetation cover in the 
image. 
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3. INITIAL SITE CHARACTERIZATION AND REGIONAL BASELINES 

The monitoring focal areas (FAs) described in  section 2 will serve as the primary data collection sites 
for the project. All detailed site characterization and survey activities will be concentrated in these 
areas. The location of the FAs and all data collected therefrom will be georeferenced and entered into a 
project GIS data base. 

Remote sensing 

Fifteen, 0.7 meter resolution true-color QuickBird satellite images2 will be acquired in 10×10 
km blocks centered on focal areas. All images will be georegistered using survey-grade differential 
GPS at prominent landmarks located in each image. Using standard image interpretation and 
supervised classification techniques, complete inventories of existing, non-project woody vegetation 
cover (tree and shrub density, crown cover and area) will be completed prior to initiating ground 
surveys. Accuracies of the respective classification models will subsequently be determined by ground 
survey. A simulated example of this is shown in Figure 3. Additionally, the images will be used to 
identify FAO Land Cover Classification System (LCCS) classes, housing units (thatch & modern 
roofs), the presence of soil conservation structures, roads, water sources including stock tanks, springs, 
boreholes, lakes and rivers, roads, tracks and physically degraded or barren areas such as rock 
outcrops, gullies, landslides and hardset areas.  

Currently available digital elevation models (DEM’s) for western Kenya were derived by 
digitizing ~20 m interval contour lines on 1: 50,000 topographic maps. These datasets are not 
sufficiently accurate to “orthorectify”3 the high-resolution satellite images that are a key component of 
our monitoring strategy. We will therefore construct DEM’s using Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) images collected by the TERRA satellite. Band 3 nadir 
and back-looking radiance scenes will be processed with standard soft-photogrammetry techniques 
(Toutin, 2002). One particular advantage of ASTER versus SPOT for DEM construction, particularly 
for large regions, is that imagery is collected along-track instead of across-track, thus reducing 
potential problems with changes in atmospheric conditions and/or radiation between passes (Toutin 
and Cheng, 2002). ASTER DEM’s will also be used to derive watershed boundaries at different levels 
of stream order, and secondary terrain information such as slope, specific catchment area and plan and 
profile curvatures. We will also use the interpreted QuickBird images to calibrate ASTER scenes for 
broader-area coverage of woody vegetation inventories.  

Socio-economic indicators 

Participatory rural appraisal 

Participatory rural appraisal techniques will be used to capture socio-economic indicators in 
each FA. Attention will first be given to villages within the FAs, although additional villages may be 
included later. Initially, focus group discussions with local leaders and community members will be 
used to introduce the project to the area and to identify the major natural resource management 
constraints faced by the community. Copies of processed satellite images and other available materials 
describing the area will be distributed to community members and used to discuss the occurrence and 
distribution of specific natural resource management problems as well as perceptions of what would   
required to overcome these. Focus groups will then be asked to rank specific problems and possible 
interventions for these by consensus. Results from these discussions will be synthesized and compiled 
                                                 
2 http://www.digitalglobe.com 
3 Orthorectification is a terrain correction technique that is necessary for measuring true map distances and areas on aerial 
photographs and satellite images. 
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as reference documents for each community (~ cluster). Results will then be further aggregated to 
identify communities with similar perceptions regarding the relative importance of different resource 
management activities that could be addressed by the project. This information may then be used for 
example to adjust the current definition of the net project area described under section 2.3 and to 
ensure that the project will be responsive to the needs of its participants. 

Willingness to participate 

There are two commonly observed empirical regularities with regard to the adoption of new land 
management practices. First, the adoption of new practices is anything but instantaneous. Second, once 
initial adoption occurs, the inter farm diffusion pathway tends to be nonlinear and asymptotic; i.e., some 
farmers adopt early, and others late (or never), with a potentially accelerating adoption process initially, 
followed by a decelerating process once most farmers have adopted. These processes are largely regulated 
by the arrival and perceived value of the new practice, as well as its strategic interaction in the overall 
farm-product market. Thus, prior information regarding who is willing to participate in which project 
activities is critical for planning delivery of targeted extension services and required resources. 
Additionally, this assessment will provide prior information on adoption rates which may subsequently be 
used for project baseline projections. 

Household surveys will be used to quantitatively assess willingness to participate in the various 
interventions proposed during the focus group discussions. Respondents will initially be asked to identify 
in which of the priority activities they would be willing to participate. We further expect that most 
activities will require privately owned land allocations. Thus, farmers will also be asked what proportion 
of their land they would allocate to activities in which they are willing to participate. This information will 
be synthesized by activity at the level of clusters (and levels beyond this), using mixed effects logistic 
regression (Gillespie et al., 1994) in which covariates such as household labor availability and resource 
endowments as well as biophysical variables can be included. 

Agricultural labor profiles 

The availability of agricultural labor at the household level is often one of the critical 
constraints to adopting new land management practices. Labor inputs are also frequently used in 
econometric studies to assess the efficiency with which goods and services can be generated under a 
given activity. It may therefore also be considered as an indicator of project impact. However, detailed 
farm labor allocation studies are difficult and time consuming to conduct, as frequent household follow 
up visits are required to establish the amount of time spent on different activities.  

We have developed a simpler approach, which is based on a simple self-assessment of the 
amount of time spent on agricultural activities. Household survey respondents are asked to rank the 
amount of time engaged in agricultural activities by all individual members of their family. We use a 
4-point ordinal rating-scale (0 – never, 1 – occasionally, 2 – part time, 3 – full time). Concurrently, 
respondents are asked to specify the size of their farm, and to identify the gender, ages, number of 
years of education and whether or not the individual family member currently has off-farm 
employment. Finally, respondents are asked if and how many non-family members are employed on 
their farms and for how long. 

We then use a random intercept proportional odds model (see Venables and Ripley, 1999) to 
remove the effects of the respective individual covariates – household and farm sizes, age, gender, 
education level and off-farm employment of family members as well as the employee effects. The 
remainder of unexplained variation in the model, is partitioned into assessment error and a random 
intercept household effect. The latter may be interpreted as a standardized measure of level of 
household agricultural labor input relative to the sampled population of households. 
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Household resources 

The level of household resource endowment may be considered as both a baseline condition for 
adoption of project activities and as an indicator of project impacts. Shepherd and Soule (1998) have 
suggested that four criteria, farm size, the proportion of land devoted to subsistence food crops, the 
diversity of farm enterprises and the number and type of cattle allows for most farms in west Kenya 
can be assigned to three resource endowment categories (Low, Medium and Well-endowed). Well-
endowed farms are >1.2 ha, that contain four or more enterprises with <40% of land devoted to 
household food production and own three or more cattle. This classification can be used both for 
targeting project activities to particularly resource poor households but also for change detection on the 
constituent variables. 

Livestock 

The size and composition of the regional livestock herd is an important indicator of household 
resource endowment, as well as an important component for developing baselines and monitoring of 
non-CO2 greenhouse gases, assessing the effects of grazing pressure on soil condition and NEP. 
Therefore, household survey respondents will be asked to enumerate livestock numbers (including 
cattle, smallstock and poultry) in their possession. Per capita as well as per household livestock herd 
size, stratified by elevation zone, will then be used to provide regional estimates of total herd size and 
composition using the most recent human population census (Kenya CBS, 1999). 

Household well-being 

Improvements to main household dwelling are an excellent indicator of household economic 
status and this is readily assessed through observation as well as by satellite remote sensing. Baseline 
studies indicate that the poorest households reside in thatch-roofed and mud-walled dwellings and the 
better-endowed families live in brick homes with metal or tile roofs (Swallow et al., personal 
communication). Access and distance to potable water sources is another indicator of household well-
being which is easily quantified through either remote sensing or systematic ground survey. Finally, 
household food sufficiency is an important indicator of household well-being that is perhaps most 
proximally linked to proposed WKIEM project activities. While detailed food availability studies will 
not be undertaken in the context of this project we will assess for how many months per year people 
feel they have sufficient food largely through focus group (rather than household) interviews4. 

FAO Land Cover Classification 

The pre-project land cover of all (reference, stocking and control) plots will be recorded using 
the FAO Land Cover Classification System (LCCS), which has been developed in the context of the 
FAO- AFRICOVER project (DiGrigorio and Jansen, 2000). The “binary phase” of LCCS recognizes 8 
primary land cover types, only 5 of which will be sampled in western Kenya including:  

• cultivated and managed terrestrial areas, 
• natural and semi-natural vegetation,  
• cultivated aquatic or regularly flooded areas 
• natural or semi-natural aquatic or regularly flooded vegetation, and 
• bare areas. 

Artificial surfaces and associated areas, natural and artificial waterbodies, will not be formally 
surveyed, though their presence within sampling clusters will be noted and georeferenced. Surfaces 
covered by snow, or ice, do not occur in the study area.  

                                                 
4 Note that this can be a fairly sensitive topic in many communities in western Kenya. 
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The “modular-hierarchical phase” of LCSS further differentiates primary land cover systems 
on the basis of dominant vegetation life form (tree, shrub, herbaceous), physiognomy, cover, leaf 
phenology and morphology, and spatial and floristic aspect. All the associated features will be assessed 
visually and coded on either categorical or ordinal rating scales, and entered into a GIS compatible 
database. The ratings are subsequently converted to unique hierarchical identifiers of different 
landcover types. A few examples of LCCS classes are presented in the table below. 

Level 1 Level 2 Basic FAO classifier 

Cultivated terrestrial areas Small sized field(s) of graminoid crop 
(Maize) with fallow system. 

A4B2B5C1D1D8 

Cultivated terrestrial areas Permanently cropped area with a 
sprinkler irrigated shrub crop (Tea) 

A2B1B5XXD3D9 

Natural or semi natural 
terrestrial vegetation 

Semi-deciduous fragmented (cellular 
40%) woodland with open short 
herbaceous layer 

A3A11B2C2D1E2F2F4F7G4F1 

Natural or semi natural 
terrestrial vegetation 

Closed short perennial grassland, single 
layer 

A6A10B4C1E5F1 

Ecosystem richness and Agro-biodiversity 
Two complimentary approaches for measuring biodiversity will be used. The first, called 

“ecosystem richness” is calculated at the level of focal areas (and subsequently higher levels 
aggregation) as: 

1 q

k
nE l

n
−⎛= + ⎜

⎝ ⎠
⎞
⎟  (3.) 

where Ek = the jackknife estimator of ecosystem richness 
 l = the total number of LCCS Level 2 land cover types present in the sample 
 n = is the total number of plots per focal area (= 345) 
 q = is the number of unique LCCS Level 2 land cover types. 

The variance of this estimate is given by Krebs (1990) as: 
2
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where var(Ek) = the variance of the jackknife estimate of ecosystem richness 
 fj = the number of clusters containing j unique landcover types (j = 1 …, l) 
 q = the number of unique LCCS Level 2 landcover types 
 n = is the total number of plots per focal area (= 345)  

The second, called “agrobiodiversity”, employs a pair-wise plant checklist of 84 useful, 
common exotic and indigenous plants was prepared. The checklist is intended for use as a rapid 
approach to biodiversity assessment by surveyors lacking detailed taxonomic knowledge and operates 
at the plot level (see Appendix 1 for recording forms). The presence of plants may be weighed in terms 
of their abundance. Frequently encountered plants not appearing on the checklist may be “written in” 
for consideration. The density and relative frequencies of plant species may be calculated from the 
checklist, and indicators of the importance of traditional, indigenous plants calculated. Weedy species 
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and those occurring in wastelands are not particularly well covered within the checklist. Because the 
plant species list is largely “close-ended”, the indicative statistics collected from this approach cannot 
be readily compared to other, more open-ended and taxonomic procedures (Boulinier et al., 1998; 
Gotelli and Colwell, 2001). The approach may, however, be well suited to documenting the changed 
composition of useful plants between project locations and over the project lifetime. 

The two approaches are complementary in that in each case the operational taxonomic units 
(OTU’s) are 625 m2 plots. Thus, for example, plot-level “useful” species richness (no. of species) may 
be aggregated by land cover types, and the corresponding conditional estimates may be generated 
using standard statistical approaches for calculating baselines, and for change detection. Moreover, 
because the distribution of the various landcover types may be mapped using high-resolution satellite 
images it may be possible to derive spatially explicit estimates of changes in both ecosystem richness 
and agro-biodiversity using this approach.  

Measuring impacts of land degradation on  Lake Victoria 

 Monitoring of deforestation, sediment and nutrient loads to lake Victoria will be achieved by 
integration of the WKIEMP with the SIDA funded project “Improved Land Management in the Lake 
Victoria Basin”. Large scale diagnostics of land degradation will be done using spectral analyses of 
soil samples, based on a reference soil library (procedure described in other section of this report). This 
quantifies the areas as erosion sources, sediment deposition basins, and reasonably stable areas. Results 
are used to target land management interventions. 

Deforestation is monitored along forest margins using remote sensing. Land degradation and 
sediment loads are monitored using the “Snowflake” approach. In this, focal areas consisting of 10 X 
10 km2 monitoring sites are located (as described in other sections of this report), within which more 
detailed sampling site are located to match TM, ASTER, and SPOT pixel resolution. Observations are 
matched with field data and socio-economic surveys collected at the monitoring sites. Interpretation 
are done for deforestation hot spots, sources of sediment, and impacts on soil fertility. 

 Sediment and nutrient loads in rivers are monitored by collecting water samples at 14 day 
intervals during the rainy season, and less frequently during the dry season. These are collected at the 
headwaters, midway, and the mouth of each river, and analyzed for normalized turbidity units (NTU). 
NTUs are calculated by measuring the dispersion of a light beam through the water sample. Results are 
interpreted for human consumption, recreation use, and impacts on aquatic life. 

Measuring initial condition biomass 

Woody biomass allometry 

Woody biomass is most often estimated by applying harvest-based allometric regressions to 
measurements of the diameters of all trees in a plot that are above a minimum size. As developing site-
specific allometric equations is fairly labor intensive, equations adopted from previous work in similar 
ecological zones are frequently used for this purpose (cf. Brown et al., 1989). To our knowledge, no site-
specific biomass equations currently exist for western Kenya, and thus relationships between above-
ground biomass, diameter at breast height (dbh), and long-term average annual rainfall, developed by the 
FAO (1997) have been used in previous studies (e.g. Woomer et al., 2000). For Dry Zones (<1500 mm yr-

1) the relationship between individual above-ground tree weight (w, in kg dry matter) and dbh (cm) is 
given by: 

wi = 0.136 dbh 2.32 (5.) 
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and in Moist Zones (1500-4000 mm yr-1) as,  

wi = 0.118 dbh 2.53 (6.) 

Other equations are available for drier (<900 mm y-1) and wetter zones (>4000 mm y-1) from FAO (1997). 
Notably, equations 5 and 6 have not been validated in western Kenya.  

Using generalized equations can introduce significant errors and biases in biomass estimates 
(see Clark et al., 2001). Thus, at the outset of the project, we will test the accuracy of existing 
equations, and alternatively develop and validate new regionally specific allometric relationships. 
Noting plant taxonomy, a suite of allometric measurements will be obtained for a large regional sample 
(~1000) of trees and shrubs. The following table summarizes all the relevant individual measurements 
that will be considered. 

Variable Units Description 

Allometric predictors:   
Height m Tree height measured with either a height pole (< 

5 m) or with a ranging clinometer (> 5 m). 
Furcation index m Stem length to first internode. 
Dbh cm Stem diameter at 1.3 m above-ground-level 

(a.g.l.)  
Crown projection m  
Apical dominance - Average ratio of the length of the longest twiglet 

at a node to the length of the next longest twiglet. 
Growth deceleration - Average ratio of terminal twiglet length to the 

previous (parent) internode length. 
Stem number n Number of stems at 1.3 m (a.g.l). 
Branching order n Average number nodes from terminal node to 

main stem. 

Dependent variables:   
Shoot weight (ws) kg 
Leaf weight (wl) kg 
Above-ground weight (wa = ws + wl)  
Coarse root weight (wr) kg 
Root : Shoot (wr / ws) - 
Total plant weight (w = wa + wr) kg 

Fresh weight of each component measured 
destruc-tively in the field, subsamples dried at 60° 
C, for 24-72 hrs to determine dry weight, 
subsampled again to determine carbon content by 
dry combustion. 

This large multivariate dataset will be subjected to standardized principal components analysis 
(PCA), to examine redundancies and clustering among individual predictors and taxonomic groupings. 
Typical for morphological data, we anticipate that the first principal component will correlate strongly 
with indicators of specimen size, whereas the residual components (2, 3, … no. variables) will correlate 
with differences in specimen shape that are unrelated to size (Somers, 1986). To ensure that a 
representative allometric calibration sample is collected, we will apply the PCA construct to group 
specimens into sampling strata using the central composite design shown in Fig. 5. 

Both the above (stem and leaf) as well as the below-ground (roots > 2 mm) biomass of a 
smaller sample consisting of at least 20 representative specimens per stratum will be harvested and 
weighed. Woody biomass and excavated coarse root material will be passed through a wood chipper to 
facilitate determination of fresh-weight in the field. Representative subsamples for each stratum × 
biomass component will be dried at 60°C for 24-72 hours for moisture content determination, and 
further subsamples will be determined by dry combustion to CO2 using a total element analyzer. In the 
case of stocking plots, for which detailed plant age and growth information will be available, species 
specific allometric equations will be developed along similar lines. A randomly selected sample of 
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individuals at different ages will be destructively harvested from stocking plots. Relationships between 
allometric measurements (Table 2), latent variables (i.e., principal components) and individual biomass 
components will be explored through graphic and correlation analyses. We will develop predictive 
equations for biomass components as well as total individual biomass with generalized-additive and 
generalized linear models (McCullagh and Nelder, 1989). The standard error of prediction of selected 
models will be reported relative to a randomly withheld 25% validation segment of the data. 

 
Figure 5. Central composite biomass sampling design using principal components analysis of 

allometric predictors (see Table 1) of trees and shrubs. 

1. Compute principal components for correlation matrix morphologic measurements, and project 
specimens into the principal components space (e.g., PC 1 and its residual hyperplane). 

2. The schematic below illustrates the placement of stratum centroids (nodes) in the central 
composite design. 

3. The number of nodes (N) in this type of design depends on the number of principle 
components (Λ) used, given by N = 2×Λ + 2Λ + 1 (9 nodes for 2 components). 

4. Assign each specimen to the nearest node based on minimum Euclidean distance. 
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Plot biomass 

Individual plant weight estimates from allometric equations may be converted to plot biomass (bj, 
kg dry matter ha-1) as: 

j
n

b q w= i∑  (7.) 

for which n is the number of trees in the sampling unit, q is an area expansion factor (10,000 m2 ha-1 / m2 
sampling unit-1), and wi are the individual plant weight estimates. While traditionally all trees/shrubs in 
given sampling unit are enumerated, the effort and time required to achieve this in a 625 m2 plot can be 
substantial, particularly in shrubland vegetation types. Thus, an alternative method that we have found to 
be particularly suited for rapid woody biomass and woody debris inventories in western Kenya, is line 
intercept sampling (LIS). A LIS sample consists of three 14.38 m radial line transects that originate at the 
plot center, and terminate at the plot edge (Fig. 4). Trees/shrubs are included in the sample if their crown 
projections intersect any portion of the line. Crown projections (ci, meters) of all intercepted individuals 
are measured as: 

i lc c cw= ⋅  (8.) 
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for which cl and cw are the largest and the smallest crown diameter of the i = 1 …,nth intersecting crown 
projection, respectively (see Fig. 4). In addition to crown projection measurements, all necessary 
allometric predictors are then measured and converted to individual plant weight (wi) using the relevant 
allometric equations. The LIS estimate of live biomass (Bj, kg 1000 m-2) may then be calculated as (de 
Vries, 1986): 

310 i
j

n i

wb
L c

= ⋅∑  (9.) 

for which L is transect length (L = 3 × 14.38 m). The variance of this estimate is approximated by: 
2
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1var
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L
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∑
 (10.) 

Where observations on plots may be considered as independent, the best linear unbiased estimate of 
biomass at the cluster level of observation (bk, Mg km-2) may be derived as: 
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 (11.) 

Based on previous experience however, the assumption of independence between plots at the cluster-
level is fairly strong. Thus in section 4 we introduce the concept of multilevel mixed effects models to 
allow more precise scaling between different levels of observation. 

Woody debris 
Standing dead and intact fallen tree biomass will be measured using the allometric approach 

described above. Other coarse woody debris such as slash and fallen branches (>2 cm in diameter) is 
best measured using LIS. The corresponding general estimator is: 

310
2

i
j

n i

xx
L l
π

= ⋅∑  (12.) 

for which xi and li are the characteristic of interest (number, volume or weight) and the needle length of 
the ith intersecting element respectively, and π (= 3.1416). If xi is the cubic volume (vi, m3) of the ith 
element, given by (Hush et al., 2003), 

2

2
i

i i
d

ix v π ⎛ ⎞ l= = ⎜ ⎟
⎝ ⎠

⋅  (13.) 

for which di is the diameter of the element measured at the point of intersection, then eqn. 13 reduces 
to: 

2125
j

n

v
L

= ⋅ id∑  (14.) 

Multiplying by wood density (γi, kg DM m-3) would subsequently yield a debris biomass (kg DM 625 
m-2) estimate for the plot as: 

2125
j

n

b d
L i iγ= ⋅ ⋅∑  (15.) 
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Coarse roots (> 2 mm) 
The distribution of belowground biomass and biomass production in forests and agroforestry 

systems remains poorly understood due to problems in the associated measurement methods. With the 
exception of coarse root biomass, there are currently no simple field methods for measuring this biomass 
component. Coarse roots, which we define as >2 mm in diameter, are thought to turn over relatively 
slowly in most ecosystems, and thus may constitute the most persistent belowground carbon storage 
component. We will use a two-part strategy (after Bledsoe et al., 1999 and described in Clarke et al., 
2001) that combines: (1.) sampling of coarse roots in replicated monoliths, and (2.) the biomass allometry 
approach (described above) based on excavation and harvesting of individual trees.  

As coarse root distributions tend to be strongly influenced by above ground biomass of woody 
vegetation, location of pits will be stratified by woody vegetation density and height. We will use 6 m 
diameter circular sampling plots for this and tally the total number of trees in each plot and measure their 
average height. The combination of number of trees and the average height of these will then be used to 
stratify locations of pits. Each profile pit location with woody vegetation cover will be matched to a pit 
location within a < 50 m distance on which woody vegetation is absent. The table below summarizes the 
proposed stratification  

No. trees 
per plot 

Average 
height No. of Pits 

absent - 24 
1 – 10 < 3 m 3 

 > 3 m 3 
10 – 20 < 3 m 3 

 > 3 m 3 
20 – 30 < 3 m 3 

 > 3 m 3 
> 30 < 3 m 3 

 > 3 m 3 

Roots will then be collected by excavating a 0.3 × 0.3 m portion of the pit, at 20 cm depth 
increments to 2.4 m, using a narrow, flat-bladed shovel and hand saw. Four such excavations will be made 
in each pit (one on each pit wall). Coarse roots are then hand sorted and washed. The remaining sample is 
dispersed in tap water, passed through a 2 mm sieve and roots collected without attempt to differentiate 
live and dead roots. Roots are washed of gross mineral contamination, dried at 65o for 24-36 hrs and 
weighed.  

The cumulative distribution of coarse root biomass for each profile (br) will be modeled as an 
asymptotically increasing function of soil depth and given by: 

1 2 1 3( ) exp( exp( ) )rb φ φ φ φ d= + − ⋅ − ⋅  (16.) 

for which φ1 (asymptote), φ2 (intercept) and φ3 (shape parameter) to be estimated by non-linear regression, 
and d is soil profile depth. Note that the asymptote expresses the total root biomass in the profile. 
Including indicators for treatment and/or classification effects in the design matrix of this function is 
straightforward and can subsequently be used to derive conditional estimates for profiles under different 
aboveground woody biomass scenarios. 

 

Litter biomass and soil organic carbon 
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Surface litter will be collected from 1 m diameter (0.785 m2) circular sampling frames at the 
center and terminal positions of each radial line transect using a small hand rake (see Fig. 3). Surface 
litter is assumed to be necromass of identifiable origin (e.g. leaves, fine branches) although judgement is 
often necessary in differentiating it from the soil organic horizon in grasslands or under trees. Surface litter 
will be washed over a 2 mm sieve, dried at 65o C to constant weight, and corrected for moisture content. 

Soil organic matter will be analyzed using standard procedures. Four topsoils (0-30 cm) and 4 
subsoils (30-50 cm) will be sampled in at the center of the plot and at the terminal end of the radial line 
transects. All soil samples will be air-dried, weighed, crushed through a 2 mm sieve and adjusted for 
rock and gravel content. Coarse root biomass will be separated from soil by sieving. A randomly 
selected subset of 5 plot-level samples per cluster will be analyzed for total C, SOC (after acidification 
with dilute HCl), N, and δ13C using element analysis coupled with ratio isotope mass spectrometry. All 
soil carbon stocks will be expressed on a soil mass (rather than volume) equivalent basis. Carbon 
sequestration from annual crops (agricultural areas) will be reflected in soil organic matter. 

Soil condition 

Spectral library 
Diffuse reflectance spectroscopy (DRS) is a technology for non-destructive characterization of 

the composition of materials based on the interaction of visible-infrared light (electromagnetic energy) 
with matter. Near-infrared spectroscopy is now routinely used for rapid analysis of a wide range of 
materials in many laboratory and process control applications in agriculture, food, geology and 
biomedicine. Both the visible–near-infrared (0.35-2.5 µm) and mid-infrared (2.5-25 µm) wavelength 
regions have been investigated for non-destructive analysis of soils and simultaneous prediction of a 
number of important soil properties. Primary properties of substances that significantly affect the shape 
of a soil spectrum generally calibrate well to soil reflectance. These include mineral composition, 
organic matter, water (hydration, hygroscopic, and free pore water), iron form and amount, carbonates, 
salinity, and particle size distribution. Importantly, these properties also largely determine the capacity 
of soils to perform various production, environmental and engineering functions. Indirect information 
can also often be obtained about secondary properties of soils (e.g. low concentrations of nutrients in 
soil extracts, potentially mineralizeable C and N, stable isotopes) because of their interactions with 
primary soil properties. 

Extracting information about soil properties of interest from reflectance spectra requires 
specialized multivariate calibration and classification techniques. The general aim is to find 
relationships between measurements made in the laboratory or field that are expensive or labor 
intensive, and the reflectance spectra, which are easy and cheap to acquire. To obtain robust 
calibrations one must minimize information in the spectra that is not relevant to prediction of the target 
variable. Various data transformations may be performed to minimize irrelevant information produced 
by effects of light scattering, variation due to sample presentation (thickness, packing, particle size) 
and optical set-up, and statistical problems such as multi-colinearity (correlation among wavelength 
bands) and non-linearity. Optimal transformations depend on the individual data set, but first 
derivative transformation has been commonly used for visible near-infrared soil spectra. Multivariate 
calibration methods are then used to relate the measured soil property to reflectance values in a number 
of different wavelength bands. Methods that include compression of the spectral data are common to 
reduce the problem of multi-colinearity. The most common methods are principal components 
regression and partial least squares regression. However, non-linear parametric regression methods 
(e.g. multivariate regression splines), non-parametric regression methods (e.g. regression trees) and 
classification methods (screening tests using classification trees) have also been used.  
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This method of soil analysis has been extensively tested in western Kenya, and a large library 
of soil samples consisting of visible-near infrared spectra (0.35–2.5 µm) and associated soil properties 
has been compiled in the context of previous projects. Based on this library, spectral transfer functions 
for predicting a number of important soil properties have been developed.  

Figure 6 shows an example for predicting soil organic carbon (SOC). A sample of >10,000 (0-
20 cm) topsoils collected across an extremely broad range of soil conditions in western Kenya was 
spectrally characterized using methods described by Shepherd and Walsh (2002). A subset of samples 
from 300 randomly selected sites (soil pH, 4.5 – 9, clay content, 20 – 83%, CEC, 11 – 117 cmol kg-1) 
was subsequently analyzed for SOC (after acidification with dilute HCl) by total element analysis at 
the U.C Davies stable isotope laboratory in California. The 1rst derivative reflectance spectra of 70% of 
these samples (n=210) were then calibrated to SOC using the regression spline method described by 
Shepherd and Walsh (2002). A further 90 randomly selected samples, from as many sites, were held-
out to assess model stability. 
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Figure 6. Prediction of soil organic carbon using diffuse reflectance spectrometry across a broad range of 

environmental conditions in western Kenya. 

Notably, this particular calibration performed nearly as well as repeated dry-combustion 
measurements carried out on subsamples from the same location (Std. repeatability error, SER = 2.98 
mg g-1). Similarly encouraging results have been obtained for a number of other important physico-
chemical soil properties in western Kenya. A selection of these is summarized in the following table. 

Prediction of soil properties based on first derivative reflectance spectra using regression splines (Shepherd & 
Walsh, 2002). The coefficient of determination (r2), bias and residual mean square error (RMSE) of a 30% hold-
out validation sample are reported. 

Soil property n Min Max r2 Bias RMSE 

pH (water) 758 4.2 10.0 0.83 -0.02 0.34 
Exchangeable Ca, cmolc kg-1 740 0.16 47.0 0.94 -0.11 2.2 
Exchangeable Mg, cmolc kg-1 739 0.01 17.9 0.91 -0.06 0.8 
CEC, cmolc kg-1 740 0.40 55.0 0.95 -0.11 2.6 
Sand, g kg-1 457 80 900 0.91 -2.3 61 
Silt, g kg-1 457 0 420 0.79 -1.9 39 
Clay, g kg-1 457 50 790 0.88 -1.9 54 
N min. potential, mg kg-1 d-1 604 0.1 30.1 0.74 -0.26 2.4 
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Exchangeable K, cmolc kg-1 768 0.02 5.74 0.66 -0.03 0.25 

Clearly, soil spectral libraries can be used to generalize results of soil assessments that are 
conducted at a limited number of sites, and thereby increase the efficiency of otherwise expensive and 
time-consuming soil measurements. The variability of soils in a study area can be thoroughly sampled 
and spectrally characterized. Soil properties or attributes of soil functional capacity are then measured 
on only a selection of soils, designed to sample the variation in the spectral library, and then calibrated 
to soil reflectance. The soil functional attributes can then be predicted for the entire library and for new 
samples from the study area. New samples that classify as spectral outliers to the library are 
characterized by conventional soil analyses and added to the calibration library, thereby increasing the 
predictive value of the library. 

Diffuse reflectance spectra of all collected soil samples (after sieving) will therefore be 
recorded using a FieldSpecTM FR spectroradiometer (Analytical Spectral Devices Inc, Boulder, 
Colorado) at wavelengths from 0.35 to 2.5 µm with a spectral sampling interval of 1 nm. Samples are 
placed into 7.4 cm diameter Duran glass petri dishes to give a sample thickness of about 1 cm, and will 
then be scanned through the bottom of the petri dishes using a high intensity source probe (Analytical 
Spectral Devices Inc, Boulder, Colorado). The probe illuminates the sample (4.5 W halogen lamp 
giving a correlated colour temperature of 3000 K; WelchAllyn, Skaneatles Falls, NY) and collects the 
reflected light from a 3.5 cm diameter sapphire window through a fibre-optic cable. To sample within 
dish variation, reflectance spectra will be recorded at two positions, successively rotating the sample 
dish through 90º between readings. The average of 25 spectra will then be recorded at each position to 
minimize instrument noise. Before reading each sample, ten white reference spectra will be recorded 
using calibrated spectralon (Labsphere®, Sutton, NH) placed in a glass petri dish. Reflectance readings 
for each wavelength band are subsequently expressed relative to the average of the white reference 
readings. The raw spectral reflectance data are then pre-processed prior to further analyses. Reflectance 
spectra will be resampled to 10 nm wavelength intervals by selecting every tenth–nanometer value 
from 350 to 2500 nm. This is done to reduce the volume of data for analysis. Reflectance values are 
then transformed with first derivative processing (differentiation with 2nd order polynomial smoothing 
with a window width of 20 nm) using a Savitzky-Golay filter. Derivative transformations are known to 
minimize variation among samples caused by variations in grinding and optical set-up. Using this 
method, a single operator can comfortably scan several hundred samples a day. 

We will generate predictions and error estimates for the various management sensitive soil 
properties using this procedure. Spectral outliers will be screened and a subset of these will be 
analyzed using more conventional reference methods (e.g. element analyses). This ensures that 
accurate calibrations for regional prediction of soil properties can be maintained. 

 
Soil erosion phase classification 

Management of accelerated soil erosion is one of the key elements for increasing net primary 
production and reducing sediment loading of waterways in western Kenya. However, spatially explicit 
measurement of soil erosion patterns, rates and associated environmental impacts in large watersheds 
remains problematic, time consuming and expensive (Ritchie, 2001). Erosion plot, pin and sediment 
trap studies are impractical in situations where erosion rates are highly variable, are difficult to 
extrapolate to wider spatial settings, and generally require long-term investments in monitoring 
activities. Lake and reservoir surveys, while useful for reconstructing historical sediment export 
dynamics of watersheds, cannot resolve the attendant source and sink areas in the landscape (Walling, 
1983). Spatially extensive field surveys and sediment budgeting approaches typically suffer from 
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observer dependence, lack of repeatability and under-detection of emerging and/or visually cryptic 
erosion symptoms (Reid and Dunne, 1996). Erosion models based on the redistribution of 
atmospherically delivered radionuclides such as Cesium-137 (137Cs) have been widely applied for 
estimating erosion rates and as watershed sediment tracers in small watersheds (Ritchie and Ritchie, 
1998; Walbrinck et al., 1998). Nonetheless, application of radioisotopes in situations where large 
numbers (i.e., 102-104) of spatially distributed samples are required to separate management sensitive 
sources of variation in soil erosion processes from environmental background and/or for large-area 
erosion mapping, are limited by extremely long analysis times and high costs. Thus, new approaches 
for rapid quantification of landscape soil erosion patterns are needed to localize and monitor land, 
water and atmospheric degradation problems in large watersheds. 

Diffuse reflectance spectrometry again offers a promising addition to conventional ground-
based erosion measurement techniques in this regard and may also assist in bridging data and 
methodological gaps in interpreting erosion phenomena from remotely-sensed information. Based on 
our Kenyan spectral library we have developed a simple spectral index that is capable of differentiating 
eroded, reference (apparently intact) and depositional soil phases. Details of this approach are 
described in (Walsh et al., in press); however, the method essentially relies on comparing recorded soil 
reflectance to a reference sediment reflectance model. Values of the index, which we refer to as δSed 
(deviation from sediment standard), theoretically vary between 0 and +∞, with. We classify soils as 
being “eroded” if their δSed ≥ “reference” soils are classified between 0.6 > δSed < 2.8, and 
“depositional” soils are classified as having values of δSed ≤ 0.6. 

We have extensively tested this index and the resulting classification relative to a suite of 
independently measured observational, radioisotope and physicochemical soil properties of western 
Kenya soils. Strong power law relationships between EDI, Cesium-137 (R2 = 0.73) and Lead-210 (R2 
= 0.75) radionuclide inventories of topsoils were observed. Similarly, relationships between EDI, 
particle size distributions, extractable soil nutrients, soil organic carbon and field infiltration capacity 
were strongly consistent with erosion induced physicochemical depletion/accretion processes. The 
index is also strongly management sensitive, as indicated from chronosequence studies conducted 
across the Kakamega forest ecotone (Walsh et al., submitted). 
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Figure 7: Relationship between δSed index and Cesium-137 concentrations of western 
Kenya topsoils. Black dots indicate below detection level 137Cs concentrations. 

We have tested this index and the resulting classification extensively relative to a suite of 
independently measured observational, radioisotope and physicochemical soil properties of western 
Kenya soils. Strong power law relationships between δSed, Cesium-137 (R2 = 0.73) and Lead-210 (R2 = 
0.68) radionuclide concentrations of topsoils have been observed (see Fig 7.). Similarly, relationships 
between δSed, particle size distributions, extractable soil nutrients, soil organic carbon and steady-state 
field infiltration capacity were strongly consistent with erosion induced physicochemical 
depletion/accretion processes. The index is also highly management sensitive and has been shown to 
decline in chronosequence studies conducted across the Kakamega forest ecotone (Walsh et al., 
submitted). 

Infiltration Capacity 
Knowledge of movement of water in soils is critical for assessment of soil erosion potential, 

water harvesting, aquifer recharge, and plant water and nutrient management. Movement of water in 
soils is principally determined by two factors; resistance of the soil to water flow and gravitational 
forcing (Faybishenko et al., 2003). At a watershed scale gravitational forcing is primarily determined 
by generation of groundwater and overland flow, which is in turn determined by factors such as 
upstream catchment area and soil infiltration capacity. Determination of resistance of soil to water flow 
may be obtained by estimating saturated soil infiltration capacity, as this represents the inverse of soil 
resistance to water flow (Tuller and Or, 2003).  

Two single-ring infiltration cylinders per plot (each 16 cm inner diameter, 25 cm tall) will be 
used to measure surface infiltration (cylinders will be located at the center of each plot, see Fig. 1, and 
~1 m apart). The cylinder rings will be carefully inserted into a pre-wetted soil surface according to the 
procedures reported in Dingman (2002), and infiltration capacities will be monitored as the change in 
water level in each cylinder for 2-3 hrs. Since determination of soil saturated hydraulic conductivity 
(Ks) from single-ring infiltrometers tests involves determination of soil alpha parameter (Reynolds & 
Elrick, 1990), undisturbed soil samples will also collected from every point-pair. These will be 
collected using 5.2 cm diameter and 5.2 cm high core rings according to the methods described by 
Klute (1986) and will be further analyzed for water retention characteristics in the laboratory using 
desorption methods with a pressure-membrane apparatus at 0.0, 0.1, 0.5, 1, 3, 5, 7, 10, and 15 bars 
(Reginato & van Bevel, 1962). Soil texture-structure indices can then be determined from water 
retention characteristics using the hydraulic parameter code RETC (van Genuchten et al., 1992). 

As infiltration may be described as an asymptotically decaying function with respect to time 
(Chow et al., 1988), we will use a slightly modified version of Horton’s (1940) equation to model 
cylinder infiltration rates (I, cm min-1) as a function of time (t): 

( )( )log( ( ) ) log exp( exp( ) )ij j j j j j ijI t f s f k t ε= + − − ⋅ +  (17.) 

for which i and j index cylinders in plots, f is steady-state infiltration, q is starting infiltration, k is the 
decay rate parameter, and ε is a normally distributed error term. 

Estimates of saturated hydraulic conductivity (Ks) from steady-state infiltration capacities are 
subsequently based on fluid flow analysis from a buried spherical cavity using the interaction between 
the flowing water, steady ponding depth of water in the cylinders, dimensions of the cylinder, soil 
texture-structure index, and insertion depth of the cylinder, as given by Reynolds & Elrick (1990): 
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 (18.) 

where a is  the radius of the cylinder used,α is the soil alpha parameter (defining the texture-structure 
index), w steady-state ponding depth of water in the cylinder, r is the radius of the cylinder, and q is 
the steady-state volumetric infiltration rate (q = fπr2). The empirical estimate of g is given by 
(Reynolds & Elrick 1990) as: 

0.316 0.184dg
r

⎛= ⋅ +⎜
⎝ ⎠

⎞
⎟  (19.) 

where d is the depth of insertion of the cylinder ring into the soil. 

 

Site index and bio-assay 
Since the concept of site quality most often refers to plant productivity, its most direct 

measurement is the quantity and allocation of biomass produced over a given time period. We have 
developed a simple, rapid procedure for assessing this variable under controlled greenhouse conditions 
using maize (Zea mays L. var. Kenya HB-8258) as an indicator species. 

Topsoil (0-20 cm) samples recovered during the survey will be screened in pot-studies. Maize 
seeds will be weighed to the nearest mg prior to planting, and individual maize seedlings will 
subsequently be grown in 500 ml plastic pots for 14 days under controlled greenhouse conditions. 
Harvested biomass will be separated into root and shoot components, and both the fresh and dry matter 
(60°C, 24 hrs) weight components will be measured to the nearest mg. The root : shoot biomass ratio 
of harvested biomass can subsequently be modeled as: 

loge
ij

r b
s j ijµ ε⎛ ⎞ = + +⎜ ⎟

⎝ ⎠
 (20.) 

for which r is root biomass (mg dry weight), s is shoot biomass (mg dry weight), µ is the mean root : 
shoot ratio of the population, bj is a random effect describing the deviation of the jth plot in the 
sampled population, and εij is a normally distributed error term. 

The motivation for this simple model is that plants in water and nutrient limited environments 
will allocate a greater proportion of their biomass to root rather than shoot growth. In this particular 
case soils will be irrigated and grown under otherwise similar (light, temperature) greenhouse 
conditions. Differences in root : shoot partitioning are therefore expected to be largely due to 
differences in soil condition. Previously conducted experiments have shown close correlation of “site 
index” with land cover conversion, EDI, as well as the infiltration capacity of soils. 

Non-CO2 greenhouse gases 

Tier 1 Level Assessment of Green house Gasses 
The current emissions of non-CO2 greenhouse gases from the project blocks will be estimated 

using the methods described in the IPCC “Revised 1966 Guidelines for National Greenhouse Gas 
Inventories” and “Good Practice Guidance and Uncertainty Management in National Greenhouse Gas 
Inventories”, also published by the IPCC. Non-CO2 gases will only be accounted for in the project 
specific baseline. Although the IPCC methods are designed for national inventories, in the absence of 
approved methods for project-based estimations, we have adapted these national methods for the 
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project area. However, the level of aggregation implicit in this method is not very applicable to the 
objectives of the project. We will attempt to develop a better approach to estimating these fluxes at the 
project level over the life of the project.  

Our approach will use the so-called Tier 1 methods in all cases. In general, country specific 
factors have not been developed for Kenya in the agriculture sector, as this sector is not considered a 
significant5 source. For our purposes, and given the large degree of variability between the different 
agroecological zones of the country, region specific factors will be required to improve the accuracy of 
the estimates based on default factors. Over the course of the project we will develop the emissions 
factors to allow us to estimate a baseline using Tier 2 methods for all significant sources. Tier 2 
accounting will also be used for significant sources in the monitoring and evaluation of the project. 

In general, we will present the decisions made at each node of the IPPC decision trees in the 
Good Practices Guidance. We then present the equation for the Tier 1 estimate, a table that summarizes 
the calculations, the source of the data to be used for the calculation and a description of the sources of 
uncertainty in the estimate. The relevant decision trees and tables are appended at the end of this 
document. The following sections describe methods that will be used to refine these estimates. 

 

Targeted Research to Refine IPCC Coefficients. 

The following sections describe methods which will be used to refine the IPCC estimates. 

Soil Emission Factor Determination 
To account for seasonal and interannual variability, we will use the he hole-in-the-pipe model 

(Firestone and Davidson 1989), which provides a conceptual framework to explain the variability of 
nitrogen oxide emissions, including the effects of deforestation and land-use change (Davidson, 1991). 
This model can easily be incorporated in ecosystem models such as CENTURY or NASA-CASA. This 
conceptual, mechanistic model is applicable to studies at various scales. The metaphor of fluid flowing 
through a leaky pipe (Figure 1) is used to describe two levels of regulation of N-oxide emissions from 
soils: (i) the amount of fluid flowing through the pipe is analogous to the rate of N cycling in general, 
or specifically to rates of NH4

+ oxidation by nitrifying bacteria and NO3
- reduction by denitrifying 

bacteria; and (ii) the amount of N that "leaks" out of the pipe as gaseous N-oxides, through one "hole" 
for NO and another "hole" for N2O, is determined by several soil properties, but most commonly and 
most strongly by soil water content. This effect of soil water content, and in some cases acidity or other 
soil factors, determines the relative rates of nitrification and denitrification and, hence, the relative 
proportions of gaseous end products of these processes. The first level of regulation determines the 
total amount of N-oxides produced (NO + N2O) while the second level of regulation determines the 
relative importance of NO and N2O as the gaseous end products of these processes. 

                                                 
5 A source is considered to be significant if it accounts for between 25-30% of the emissions from the source category. 
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Figure 8. Hole-in-the-Pipe Conceptual Model 

This mechanistic model is based, first, on the idea that emissions of N-oxides increase with 
increasing N fertility. The second level of regulation addresses the relative importance of NO and N2O 
production. Both nitrification and denitrification produce both gases, but nitrification often produces 
greater quantities of NO relative to N2O, and denitrification usually produces greater quantities of N2O 
relative to NO (Davidson, 1993).  Several factors have been shown to affect the ratio of N2O to NO 
(Firestone and Davidson, 1989), but Davidson (1993) suggested that soil water content could be a 
useful predictor of the ratio at regional and global scales. At water content below field capacity (field 
capacity is often operationally defined as water content at 0.010 MPa tension), nitrification is often the 
predominant gas producing processes, so NO predominates. In wet soils, denitrification increases as 
O2 diffusion decreases and, as soils become more anaerobic, N2O from denitrification becomes the 
predominant N-oxide. The water content effect is a continuum, although the response of the N2O:NO 
ratio to soil water content may not be linear. Experimental evidence and field studies exist that support 
this hypothesized relationship (Davidson, 1993; Davidson et al., 1993; Keller and Reiners 1994; Riley 
and Vitousek, 1995).  

Measurement of N2O and NO Fluxes 
Surface fluxes of N2O and NO will be analyzed using chamber techniques in a subset of 

reference plots, stratified by spectral soil condition (erosion phase and hydraulic conductivity), that are 
representative of the variation encountered in the project landscape. Chambers will be made of a 
polyvinyl chloride (PVC) ring (20-cm diameter x 10-cm height) and a vented PVC cover made from an 
end-cap of a 20 cm diameter PVC pipe. PVC rings will be pushed into the soil to a depth of 2-3 cm to 
make the base of the chamber. An intensive sampling scheme involving monthly measurements will be 
made in plots representing project interventions and appropriate controls. A less intensive scheme will 
be used to capture variability associated with landscape variability. 

NO fluxes will be measured using a dynamic chamber technique similar to Davidson et al. 
(1991). At the time of measurement, a vented cover will be placed over the base, making a chamber 
with approximately a 4 L head-space volume. Air will be circulated in a closed loop between a 
Scintrex LMA-3 NO2 analyzer (Scintrex, Inc., Ontario, Canada) and the chamber through Teflon 
tubing using a battery operated pump, at a rate of 0.5 L min-1. Inside the instrument, NO will be 
oxidized to NO2 by reaction with CrO3 and the NO2 will be then mixed with Luminol solution to 
produce a luminescent reaction directly proportional to the mixing ratio of NO2. Because of problems 
with humidity wetting the CrO3 catalyst, we will dry the air stream entering the analyzer using a 
Nafion gas sample dryer (Perma Pure Inc., Toms River, NJ). NO concentrations will be recorded at 5 
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second intervals over a period of 3 to 4 minutes using a data logger. Fluxes will be calculated from the 
rate of increase of NO concentration using the steepest linear portion of the accumulation curve. The 
average length of time used for the calculation of fluxes is 1.9 min. The instrument will be calibrated 
2-3 times daily in the field, by mixing varying amounts of a 1 ppm NO standard with NO- and 
NO2-free air.  

N2O fluxes will be measured with a static chamber technique (Matson et al., 1990), using the 
same chamber bases as those used for the NO measurement. At the time of measurement, a PVC cover 
(20-cm PVC end-cap) will be placed over the base making a chamber with a head-space volume of 
approximately 5.5 L. Four 20mL headspace samples will be withdrawn at 10-minute intervals and 
returned to the laboratory for analysis with a gas chromatograph fitted with an electron capture 
detector.  

N2O fluxes will subsequently be calculated from the rate of concentration increase, determined 
by linear regression, based on the four samples. Occasionally, and particularly for very high fluxes, the 
accumulation curve may appear nonlinear, probably due to the reduction in the concentration gradient 
between the soil atmosphere and the head-space (Hutchinson and Livingston, 1993). In these cases, 
only points representing the linear portion of the accumulation curve will be used. In almost all cases, 
NO and N2O flux measurements for a particular site will be made on the same day and within 90 
minutes of each other.  

CH4 consumption by soils 
Surface fluxes of CH4 will be measured using chambers techniques similar to NO and N2O. A 

conceptual model will be used to estimate consumption by soils under improved and traditional land 
use practices. The model is based upon the linkage between CO2 in the soil atmosphere and CH4 
fluxes. Microbial and root respiration affects the availability of O2 to microbial populations in the soil. 
Hence, the availability of O2 is affected by both physical restraints on diffusion, which are determined 
by soil water content and soil texture, and by biological processes of O2 consumption. Thus, the effect 
of high rates of soil respiration reinforces the effect of restricted diffusivity during the wet season by 
increasing the probability of occurrence of anaerobic microsites where methanogenesis can occur and 
by reducing the probability of well aerated microsites of CH4 consumption. The combined effect either 
reduces the sink strength of CH4 or results in the soil becoming a net source. 
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Figure 9. Conceptual model of CH4 exchange between the atmosphere and the soil. 

The significance of this is that seasonality of precipitation must be interpreted in terms of its 
effects both on diffusivity and on plant phenology and microbial activity. Furthermore, responses of 
plant communities to seasonal patterns of precipitation vary depending upon the land use and 
ecosystem type within the same climatic regime. Where agricultural ecosystems are very productive 
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during the wet season and senescent during the dry season, CH4 fluxes can vary from net emission to 
relatively high rates of uptake (Figure 9). Deeper rooted woody ecosystems, in contrast, maintain 
modest rates of soil respiration during the dry season, which results in lower rates of net CH4 uptake. 
Parameterizing this conceptual model for the systems that will be part of this project will be straight 
forward and the model is easy to link with other ecosystem models such as CENTURY or NASA-
CASA. 

Calculating baselines (plot to region) 
We will assess regional baselines using mixed-effects models. Mixed models provide a flexible 

extension of generalized linear models, intended specifically for analyses of grouped data including 
longitudinal data, repeated measures, blocked designs and multilevel data among others (Pinheiro and 
Bates, 2000). In this particular case grouped data structures occur as a consequence of sampling at 
multiple spatial scales across a large project area. Thus, plot-level measurements are grouped within 
clusters, which are in turn grouped within 10×10 km blocks. Each level is replicated several times, and 
is associated with specific length or area dimensions. The following linear mixed effects model 
represents the grouped structure as: 

yij= Xijβ + Zi,jbi +Zijbij + εij (21.) 
where: 

yij = a two-level grouped response variable (e.g., clusters within FA’s), i = 1 … m, 
j = 1… mi

Xij = a fixed effects design matrix, 
β  = unknown fixed effects coefficients, 
Zi = a pi × r design matrix, 
bi = an unknown r × 1 vector of random coefficients, assumed to be independently distributed 

across plots with distribution γi ~ N(0, σ2B), for which B is a between subject variance-
covariance matrix, 

εij = within-group error term distributed as εij ~ N(0, σ2I), where I is a within subject 
covariance matrix. 

 

Generalizations to higher levels of grouping (e.g. plots / clusters / FA’s / Elevation zones) are 
straightforward (see Pinheiro and Bates, 2000). Distributions for all the relevant levels of grouping will 
initially be assumed to be independently and normally distributed with zero mean, but these 
assumptions may be modified should they prove to be inappropriate6. Models of this type may be fit by 
different methods including, maximum likelihood (ML), restricted maximum likelihood (REML) and 
Markov chain Monte Carlo (MCMC) simulation, which under certain circumstances can provide 
qualitatively different results. Convergence between different methods is generally indicative of stable 
parameter estimates and will be assessed. Once a stable model formulation has been found, best linear 
unbiased predictions (BLUP’s) of variations in response variable (incl. confidence intervals etc.) can 
be generated at any given level in the multilevel structure. This provides an explicit mechanism for 
scaling observations from plot-to-region.  

 

 

                                                 
6 There are a variety of diagnostics available for checking this (see Pinheiro and Bates, 2000). 

 29



MONITORING AND IMPACT ASSESSMENT 

Monitoring Focal Areas and Reference plots  

Section 2 describes the broad scale field monitoring system, based on 10 X 10 km monitoring 
focal areas (FA) one each for lowlands, midlands, and uplands in each basin. Ground measurements 
within each focal area will be carried out using a spatially clustered sampling plan. Fifteen plot 
clusters, based on QuickBird images, will be selected at spatially stratified, randomly located grid 
intersections in each image. Randomization at this level ensures that the collected data are as locally 
representative as possible.  

Within each cluster, there will be 13 systematically located 625 m2 (~28.8 m diameter) circular 
sampling plots. Plots are located at 2, 4, 8, 16 × plot diameter distances along 3 radial line transects 
placed at 120° angles to one-another. This scheme is designed to efficiently sample local ecosystem 
patterns across a ~64 ha area. All plots will be georeferenced with survey-grade GPS equipped with 
satellite broadcast correction. To absolutely ensure that plots can be relocated at a later point in time, a 
prominent local reference position will be selected within each cluster, from which navigation lines to 
individual plots will be established. All reference locations and plots will be documented with digital 
photographs that will contain the precise geographic coordinates of each plot. All georeferenced 
photographs will subsequently be entered into a GIS compatible database to facilitate validation of 
field observations, and assist in navigation during revisits.  

The table below provides a summary of the proposed number of observations at each level. A 
schematic diagram of the cluster-level sampling pattern is shown below. 

 FA’s Clusters Plots 
No. per sublevel 15 13 
Total No. 9 135 1755 

Note that positioning of plot locations within clusters is provided as a general guideline. Actual plot 
locations will vary somewhat, based on local land cover homogeneity criteria7
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7 i.e. plots will only be located in homogenous FAO Land Classification System Types (see section 3.4 for description). 
Thus, for areas near land cover boundaries actual plot locations may deviate slightly from the cluster pattern. 
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Figure 4. Ground sampling design at the cluster and plot levels of observation. 
 

Data collected at each cluster will include all biophysical measures described in Section 3, including 
above and below ground biomass, site conditions, erosion observations, etc. Previous experience with 
this sampling plan has shown that a 5-person team consisting of 1 person for data recording GPS data 
collection and infiltration measurement, and 2 persons for soil augering and vegetation sampling 
respectively can comfortably complete 1 cluster in ~1 day depending on accessibility and local terrain 
conditions. Operational costs for implementing the approach are being monitored. 

Farmer-selected stocking plots 

Five additional 625 m2 (25×25 m) square plots per cluster will be identified in collaboration 
with local communities and individual land-owners. These experimental plots will be stocked with a 
variety of farmer-selected tree species, as well as with a project-selected indigenous reference tree. 
These “stocking plots” are primarily intended to provide information about tree survival, growth 
performance, and carbon sequestration traits across differing site conditions in western Kenya. They 
will also be used as demonstration plots, and as seed orchards for supplying locally operated nurseries. 
Within each stocking plot, 325 m2 rectangular livestock-proof exclosures will be established to assess 
the effects of tree performance vis-à-vis livestock browsing. This is necessary for monitoring NPP and 
NEP (see section 4.5). The layout of stocking plots is shown below.  

Slope

25 m

Slope

25 m

 

 Stocking plot layout. Stocking at 1600 trees ha-1 (2.5 m spacing = 100 individuals) on a 625 m2 plot, with 1 reference 
species, and species per plot “farmers choice”. In each case half of the plot will be fenced to assess the importance of 
livestock herbivory. A guard row of trees will be included to minimize edge effects on subsequent measurements. 

 

Stocking plots will be matched with an equal number of “control plots” located immediately 
adjacent to stocking plots and under essentially identical pre-project site conditions8, and on which no 
project facilitated interventions will be carried out. Both stocking and control plots will be monitored 
over the course of the project. This will provide information on shifts in non-project related baseline 
measurements. The following table summarizes the total number proposed stocking and control plots 
that will be established9. 

 

 

                                                 
8 Note that this assumption will be quantified prior to initiating plantings 
9 To ensure that stocking plots are managed in accordance to project guidelines, we anticipate the necessity of 
compensating farmers for incurred production losses and labor inputs. Compensation  
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 FA’s Clusters Control Stocking 
No. per sublevel 15 5 5 
Total No. 9 135 675 675 

 

General impact assessment models 

Conventionally, project impact attribution involves collection of baseline data prior to an 
intervention and comparing it to data collected after the intervention. For example, under current IPCC 
guidelines, all gains in CO2 emission reductions above regional baseline-levels may be credited to 
project activities (Watson et al., 2000). The implied model for a given response variable (y), e.g., NEP, 
is: 

yi = µ + pi + εi (22.) 

for which µ is the population mean, p is the effect of period (i = before or after), and ε is a normally 
distributed error term. This is a reasonable approach in situations where projects are implemented as 
large, homogeneous, well-delineated projects, or for example for monitoring adoption dynamics. In 
situations where this is not the case, project impact attribution using simple before-and-after (BA) 
studies is more difficult, as the data would be collected without controlling for non-project related 
variations in impact indicators. Thus, measured changes would be confounded with sampling period 
and could not be reliably attributed to the project.  

More rigorous impact assessment models therefore often use control-intervention pairing (CIP, 
Stewart-Oaten et al., 1986; Smith, 2002), in which before-after observations are paired with 
observations at control sites on which no project activities are implemented. Changes in target 
indicators can then be reliably assessed as the interaction between location (i.e., control vs 
intervention) and period (i.e., before vs after intervention) strata. In its most basic form, the implied 
model for response variable (y) is: 

yij = µ + pi+ lj+ (p.l)jk +εij (23.) 

for which, µ is the population mean, p is the effect of period (i = before or after), and l is location (j = 
control or intervention). With repeated measurements, nested within before-after periods, the model is 
given as: 

yijk = µ + pj+ tk(i) + li + (p.l)ij +εijk (24.) 
for which t represents sampling times within periods (k = 1, 2 … tB, for period i = before; and k= 1, 2 
… tA for i = after. Spatial stratification and replication of before-after, control-impact pairs (BACIP) 
provides the primary means for partitioning the relevant random and project-related variance 
components, and thus these simple models can generally be expanded to accommodate different levels 
of scale. The following sections describe application of this general construct to monitoring and impact 
assessment of the various socio-economic and biophysical performance indicators described under 
section 3. 

Adoption 
The appropriate model for assessing expansion of the net project area over the lifespan of the 

project can be described by a modification equation 22 given by: 
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for which fa is the proportion of the net relative to gross project area, p is period (before vs after) and e is a 
normally distributed error term. This basic model may be conditioned by grouping levels (e.g. clusters 
within FA’s) which can then be included random effects as described under section 3.10. 

Socio-economic indicators 
The economic and social benefits accruing through this project are among its most important 

goals but may also the most difficult to quantify. Several indicators of project impacts that relate 
broadly to potential changes in household economic status can be assessed in a reasonably quantitative 
manner. The table below outlines these 

Socio-economic response variable Variable type 

Labor:  
Family size count 
Standardized farm labor index  continuous 

Expenditure:  
Major expenditure source categorical 
Weekly household expenditure ordinal 
Standardized household expenditure index. continuous 

Resources:  
Farm size (ha) continuous 
%age of land allocated to subsistence crops  ratio 
No. of on farm enterprsies count 
No. of cattle count 
No. of equines count 
No. of pigs count 
No. smallstock count 
No. poultry count 
Endowment category ordinal 

Well-being:  
Dwelling type categorical 
Primary drinking water source categorical 
Quality of primary drinking water source. continuous 
Distance to water source continuous 

The impact assessment model described in equations 24 and 25 will be used to determine the 
impact of the project in the socioeconomic indicators. 

The monitoring plan has not attempted to develop a standardized survey tools for the numerous 
other social benefits that may eventually be accrued by the project. Socio-economic surveys have a 
high degree of client-and-site specificity, and survey instruments that harbor inappropriate questions 
represent a disservice to the project scientists and goals. Furthermore, much of the most important 
information concerning the human dimension of project impacts is gained by experienced field 
workers using informal approaches. Nonetheless, it is extremely important that a detailed record of 
such results and observations be maintained. Ultimately, the success of this project will be viewed in 
terms of its social benefits derived by households undertaking environmentally-friendly land 
management practices, and it is extremely important that these benefits be precisely documented, 
insightfully interpreted and creatively communicated to a broad cross-section of interests. These 
challenging tasks must be undertaken in a responsive, iterative manner. 

 

Land cover and agro-biodiversity change 
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Land cover change will be assessed qualitatively from remote sensing images acquired at the start and the 
end of the project. Any shifts in area in the FAO LCCS classification will be noted.  Agrobiodiversity will 
be assessed according to changes in “species richness”, and also qualitatively from the field surveys that 
will be conducted at the beginning and end of the project.  These surveys will be conducted in all project 
blocks.  The BACIP evaluation approach involving equations 23 and 24, as given above will be employed 
to determine project impact on biodiversity.  Results will be reported as trends. 

 

Carbon sequestration 

For reasons indicated in the introductory section we anticipate that the largest gains in net 
ecosystem production (hence carbon sequestration) will be largely determined by increased abundance of 
woody vegetation biomass in the in the western Kenya landscape. 

 

Tree growth 
Tree weight growth, like many other plant growth relationships, may be expressed in one of two 

ways, as cumulative growth, or as incremental growth. Cumulative growth is often an S-shaped curve 
when plotted against plant age. Alternatively, instantaneous growth rate curves, (increment curves) show 
the current rate of weight growth at any point in time. Plant weight (w, kg) at age (t) is therefore most 
often represented by growth functions such as the widely used Richards equation (Richards, 1959): 

(( ) 1 exp( ) mw t s r t= ⋅ − ⋅ )  (26.) 

Though considered an empirical model, the Richards-equation lends itself to biological interpretation 
with s representing asymptotic weight with r & m providing shape parameters that can accommodate 
Mitscherlich, exponential, Gompertz and/or logistic (von Bertalanffy) growth dynamics depending on 
values of m (see examples in Fig. 4). The first derivative of w with respect to t is biomass increment 
(kg yr-1) given by: 

( ) (11 exp(- ) expmdw s r t m r
dt

− )r t= ⋅ − ⋅ ⋅ ⋅ − ⋅  (27.) 

The 2nd derivative (or growth acceleration curve, not shown), indicates where w is increasing or 
decreasing over time. When the 2nd derivative is set to zero, solving for t yields t*, the inflection point 
at which maximal biomass growth occurs, 

* 1 1loget
r m

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (28.) 

which is often useful for predicting the onset of canopy closure and density-dependent mortality in 
even-aged, self-thinning populations. 
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Figure . Example of simulated biomass and increment curves as a function of age 

Populating equations (5.) and/or (6.) with data is straightforward (in principle), requiring 
repeated observations of biomass on individuals in the population. Model parameters can then be 
estimated using nonlinear regression techniques that can be adjusted to include site and/or population 
specific covariates. While it is reasonable to assume that the general form of the Richards-model will 
be common to all individuals in a stand, intra- as well as interspecific differences between individuals 
will determine the specific parameter values  
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 (29.) 

 

Net Primary Productivity ( NPP*) and Net Ecosystem Productivity (NEP*) 
Extending the model for tree growth, we can estimate net primary productivity, which corresponds 

to the net amount of carbon fixed by the vegetation from  

 

* ˆˆ dwNPP n
dt

= ⋅  (30.) 

where n represents the number of trees growing. 

 

Total carbon is that is fixed in the ecosystem can also be lost through heterotrophic processes.  Thus it 
important to calculate the net carbon gain by the ecosystem.  Net ecosystem productivity is calculated 
from the following:  

* ˆˆ ˆdw dnNEP n w
dt dt

ˆ
= ⋅ + ⋅  (31.) 
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Calculating the Net Project Effect on Atmospheric GHGs 

Non-CO2 GHG’s 
The non-CO2 gasses will be assessed according to Tier 1 accounting at the start of the project to 
establish the greenhouse gas baseline. However, targeted research during the course of the project will 
result in improved coefficients, and a move to Tier 2 accounting. In this case the baselines will be 
updated. At the end of the project, the baselines will be repeated to identify atmospheric forcing due to 
the non-CO2 gasses, expressed as CO2 equivalents. CH4 has 21 times the forcing strength of CO2, and 
N2O has 310 times more forcing strength. 

 

Calculating carbon equivalents  
The effect of the project in terms of carbon equivalents will be calculated on the basis of net-net 
accounting. This will involve summing the carbon sequestered in the five key pools recognized by the 
IPCC (aboveground biomass, dead wood, belowground biomass, litter, and soil organic matter) under 
the agroforestry and soil management interventions (tonnes CO2 equivalent) compared to the baseline 
condition where interventions were not applied. However, determining the net effect of the project on 
atmospheric GHGs must also account for changes in sources of N2O and changes in both sources and 
sinks of CH4.  Thus, we will calculate the overall carbon benefits of the projcet to the atmosphere in 
terms of carbon equivalents as: 

Ceq = NEP - CN2O + CCH4 sink – CCH4 source                                        (32.)          

 

Results will be expressed as tonnes CO2 equivalents.  The before-after control-impact procedure 
(BACIP) will be used, as described in earlier sections. This will identify the project impacts on 
atmospheric GHG loading. 
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Appendix 1 
 
Data Form: A rapid assessment of biodiversity in smallhold systems of west Kenya (1 of 4) 
 
Household ____________________________ Location ___________________________ 

Division ______________________________ District _____________________________ 

Longitude ____________________ Latitude ____________________ Elevation ____________ 

Farm size _________________ ha Enterprise no. _________________ Cattle _____________ 

Enumerator ___________________________ Date _______________________________ 

1. Fruit trees 
Exotic   few  some many  Indigenous  few  some many 
-------------------------------------------------------------------------------------------------------------------- 
Mango   [ ] [ ] [ ]  Wild custard apple [ ] [ ] [ ] 
Avocado  [ ] [ ] [ ]  Prunus africana [ ] [ ] [ ] 
Guava   [ ] [ ] [ ]  Tamarind  [ ] [ ] [ ] 
Citrus   [ ] [ ] [ ]  Vanguaria  [ ] [ ] [ ] 
other ____________ [ ] [ ] [ ]  other ____________ [ ] [ ] [ ] 
-------------------------------------------------------------------------------------------------------------------- 
total       total 
factor       factor 
weighted total      weighted total 
_____________________________________________________________________________ 
 
2. Trees with “needle” leaves 
Exotic   few  some many  Indigenous  few  some many 
-------------------------------------------------------------------------------------------------------------------- 
Cypress/Pine  [ ] [ ] [ ]  Juniper   [ ] [ ] [ ] 
Casuarina  [ ] [ ] [ ]  Podocarpus  [ ] [ ] [ ] 
other ____________ [ ] [ ] [ ]  other ____________ [ ] [ ] [ ] 
-------------------------------------------------------------------------------------------------------------------- 
total       total 
factor       factor 
weighted total      weighted total 
_____________________________________________________________________________ 
 
3. Bamboo 
Exotic   few  some many  Indigenous   few  some many 
-------------------------------------------------------------------------------------------------------------------- 
Golden bamboo [ ] [ ] [ ]  Mountain bamboo [ ] [ ] [ ] 
other ____________ [ ] [ ] [ ]  other ____________ [ ] [ ] [ ] 
-------------------------------------------------------------------------------------------------------------------- 
total       total 
factor       factor 
weighted total      weighted total 
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_____________________________________________________________________________ 
 
 
 
Data Form: A rapid assessment of biodiversity in smallhold systems of west Kenya (2 of 4) 
 
4. Other trees (timber, fuel, ornamental and ceremonial) 
Exotic   few  some many  Indigenous  few  some many 
-------------------------------------------------------------------------------------------------------------------- 
Prosopis  [ ] [ ] [ ]  Acacia (not wattle) [ ] [ ] [ ] 
Grevillia  [ ] [ ] [ ]  Albizia   [ ] [ ] [ ] 
Jacaranda  [ ] [ ] [ ]  Erythrina  [ ] [ ] [ ] 
Flamboyant  [ ] [ ] [ ]  Nandi flame  [ ] [ ] [ ] 
Cassia   [ ] [ ] [ ]  Camel’s foot  [ ] [ ] [ ] 
Eucalyptus  [ ] [ ] [ ]  Cordia   [ ] [ ] [ ] 
Monkeypod   [ ] [ ] [ ]  Sausage Tree  [ ] [ ] [ ] 
Pepper tree  [ ] [ ] [ ]  Markhamia (luciola) [ ] [ ] [ ] 
Ficus (exotic)   [ ] [ ] [ ]  Ficus (native)  [ ] [ ] [ ] 
Pithecellobium [ ] [ ] [ ]  Milicea (murumba) [ ] [ ] [ ] 
Bottlebrush tree [ ] [ ] [ ]  Croton   [ ] [ ] [ ] 
Prickly pear cactus [ ] [ ] [ ]  Euphorbia  [ ] [ ] [ ] 
other ____________ [ ] [ ] [ ]  other ____________ [ ] [ ] [ ] 
-------------------------------------------------------------------------------------------------------------------- 
total       total 
factor       factor 
weighted total      weighted total 
_____________________________________________________________________________ 
 
Subtotal for trees (Categories 1 to 4) 
 
total       total 
factor       factor 
weighted total      weighted total 
_____________________________________________________________________________ 
 
5. Shrubs, hedges and live fences 
Exotic   few  some many  Indig1 
enous  few  some many 
-------------------------------------------------------------------------------------------------------------------- 
Gliricidia  [ ] [ ] [ ]  Sesbania  [ ] [ ] [ ] 
Leucaena  [ ] [ ] [ ]  Carissa   [ ] [ ] [ ] 
Calliandra  [ ] [ ] [ ]  Moringa  [ ] [ ] [ ] 
Lantana  [ ] [ ] [ ]  Euphorbia  [ ] [ ] [ ] 
Tithonia  [ ] [ ] [ ]  Tephrosia  [ ] [ ] [ ] 
Caesapinia  [ ] [ ] [ ]  Terminalia  [ ] [ ] [ ] 
other ____________ [ ] [ ] [ ]  other ____________ [ ] [ ] [ ] 
-------------------------------------------------------------------------------------------------------------------- 
total       total 
factor       factor 
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weighted total      weighted total 
_____________________________________________________________________________ 
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Appendix 2 

 

DECISION TRESS AND WORKSHEETS FOR NON CO2 GASSES 
 

LIVESTOCK 
 
CH4 emissions from Enteric fermentation in domestic livestock 
 
Decision tree:  In the national accounting system, this category is not a significant source, but it may 
be significant in the project area.  Furthermore, we do not have adequate data at this time to permit a 
Tier 2 estimate.  The estimate that we are presenting at this point is a Tier 1 estimate. 
 

Emissions = EF • population/(106 kg/Gg) 
 
Where ef is the emission factor and population is the number of animals (head).  We used the 
emissions factors in ipcc guidelines tables 4.3 and 4.4 
 
CH4 emissions from manure management 
 
Decision tree:  The data are not available to do an ‘enhanced’ Livestock Population Characterization.  
This category is not considered a key source category10 in the national inventory, so no country or 
region specific emission factors exist.  Thus, we will use Tier 1 and IPCC default emission factors.  
The estimate that we will present at this point is a Tier 1 estimate.  We will develop the factors to 
permit a Tier 2 estimate. 
 

Emissions = EF • population/(106 kg/Gg) 
 

where EF is the emission factor, and population is the number of animals (head).  We used the 
emissions factors in IPCC Guidelines tables 4.3 and 4.4 
 
N2O emissions from manure management 

 
Decision tree:  The data is not available to do an ‘enhanced’ Livestock Population Characterization.  
This category is not considered a key source category.  No country or region specific N-excretion rates, 
manure management and usage data or emission factors exist.  Thus, we used Tier 1 and IPCC default 
emission factors.  We assumed that the principal manure management system practiced for penned 
cattle consisted of composting the manure and then spreading it on fields; for all other livestock we 
assumed that manure was essentially unmanaged. 
 

N2O-N = Σ(S) {[Σ(T) (N(T) • Nex(T) • MS(T,S))] • EF3(S)} 
 

                                                 
10 A key source category is one that is prioritized in the inventory system because it has significant influence on the  total 
inventory of total direct greenhouse gases in terms of absolute level of emissions, trend in emissions, or both. 
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Where: 
N(T) =   Number of head of livestock per category T 
Nex(T) =  Annual average excretion per category T 
MS(T,S) = Fraction of total annual excretion for each livestock category T in management 

system S 
EF3(S) =  N2O emission factor for manure management system S 
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Worksheets: 
MODULE AGRICULTURE 

SUBMODULE METHANE AND NITROUS OXIDE EMISSIONS FROM DOMESTIC LIVESTOCK 
ENTERIC FERMENTATION AND MANURE MANAGEMENT 

WORKSHEET 4-1 

SHEET 1 OF 2 METHANE EMISSIONS FROM DOMESTIC LIVESTOCK ENTERIC 
FERMENTATION AND MANURE MANAGEMENT 

 STEP 1 STEP 2 STEP 3 
 
 

Livestock Type 

A 
 

Number of 
Animals 

 
 

(1000s) 

B 
 

Emissions 
Factor for 
Enteric 

Fermentation 
(kg/head/yr) 

C 
 

Emissions 
from Enteric 
Fermentation 

 
(t/yr) 

D 
 

Emissions 
Factor for 
Manure 

Management 
(kg/head/yr) 

E 
 

Emissions 
from Manure 
Management 

 
(t/yr) 

F 
 

Total Annual 
Emissions from 

Domestic Livestock 
(Gg) 

 

   C = (A x B)  E = (A x D) F = (C + E)/1000 

Dairy Cattle  36  1.00   
Non-dairy Cattle  32  1.00   
Buffalo  55     
Sheep  5  0.21   
Goats  5  0.22   
Camels  46  2.56   
Horses  18  2.18   
Mules & Asses  10  1.19   
Swine  1  2.00   
Poultry  --  0.023   
Totals       
 
 

MODULE AGRICULTURE 

SUBMODULE METHANE AND NITROUS OXIDE EMISSIONS FROM DOMESTIC LIVESTOCK 
ENTERIC FERMENTATION AND MANURE MANAGEMENT 

WORKSHEET 4-1 (SUPPLEMENTAL) 

SPECIFY AWMS PASTURE, RANGE, AND PADDOCK 

SHEET 1 OF 2 METHANE EMISSIONS FROM DOMESTIC LIVESTOCK ENTERIC 
FERMENTATION AND MANURE MANAGEMENT 

    
 
 

Livestock Type 

A 
 

Number of Animals 
 
 

(1000s) 

B 
 

Nitrogen Excretion 
Nex 

 
(kg/head/yr) 

 

C 
 

Fraction of Manure 
Nitrogen per AWMS 

(%/100) 
(fraction) 

D 
 

Nitrogen Excretion 
per AWMS, Nex 

 
(kg/head/yr) 

    D = (A x B x C) 

Dairy Cattle  60 83  
Non-dairy Cattle  40 96  
Sheep  12 99  
Swine  16 0  
Poultry  0.6 81  
Others  40 99  
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Total  

 
 

MODULE AGRICULTURE 

SUBMODULE METHANE AND NITROUS OXIDE EMISSIONS FROM DOMESTIC LIVESTOCK 
ENTERIC FERMENTATION AND MANURE MANAGEMENT 

WORKSHEET 4-1  

SHEET 2 OF 2 METHANE EMISSIONS FROM DOMESTIC LIVESTOCK ENTERIC 
FERMENTATION AND MANURE MANAGEMENT 

STEP 4 
 
 

Animal Waste  
Management System 
(AWMS) 

A 
 

Nitrogen Excretion 
Nex (AWMS) 

 
(kg N/yr) 

 

B 
 

Emission Factor For  
AWMS 

EF3

(kg N2O-N/kg N) 
 

C 
 

Total Annual Emissions 
of N2O 

 
(Gg) 

   C = (A x B)[44/28] x 10-6

Anaerobic lagoons  0.001  
Liquid systems  0.001  
Daily spread  0.0  
Solid storage and drylot  0.02  
Pasture range and paddock  0.02  
Others  0.005  

Total    

 
 
 
Source Data:  Data will be collected on animal populations by project block at the outset of the 
project.  This data will be crosschecked using remote sensing data and census data held by ILRI and 
the Ministry of Agriculture. 
 
Uncertainty assessment:  The largest source of uncertainty in this submodule will be the estimation of 
the livestock population.  We will use the livestock characterization procedures set out in the Good 
Practices Guidance to minimize this uncertainty.  Using the Tier 1 method, there will also be 
uncertainty introduced by the generic emissions factors.  Emission factors are unlikely to be known 
more accurately than ± 30%, and may be uncertain to ± 50%.  Developing the emissions factors for a 
Tier 2 approach will minimize this uncertainty. 
 
METHANE EMISSIONS FROM FLOODED RICE  
 
Decision tree:  As there is no flooded rice in the project blocks, we report that these emissions are not 
occurring. 
 
Worksheet: 
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MODULE AGRICULTURE 

SUBMODULE METHANE EMISSIONS FROM FLOODED RICE FIELDS 

WORKSHEET 4-2 

SHEET 1 OF 1 

   
 
 

Water Management Regime 
 

A 
 

Harvested  
Area 

B 
Scaling 

Factor for 
Methane 
Emissions 

 

C 
Correction 
Factor for 
Organic 

Amendment 
 

D 
Seasonally 
Integrated 

Emission Factor for 
Continuously 

Floded Rice without 
Organic 

Ammendment 
 

E 
CH4 Emissions 

 

      E = A x B x C x D 

Continuously Flooded      
Single 
Aeration      Irrigated Intermittently 

Flooded Multiple 
Aeration      

Flood Prone      
Rainfed 

Drought Prone      
Water depth  
50 – 100 cm      

Deep Water 
Water depth > 100 cm      

Totals      
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EMISSIONS FROM BURNING  
 
Prescribed Burning of Savannas 
 
Decision Tree: This category is not considered a key source category.  No country or region specific 
activity data on the area burned, aboveground biomass density, aboveground biomass burned, 
aboveground biomass that is living, combustion efficiency or emission factors exist.  Thus, we used 
Tier 1 and IPCC default emission factors.  For default values, no IPCC values exist for East Africa.  
We use default values from West Africa for the South Sudan Zone. 
 
Worksheets: 
 

MODULE AGRICULTURE 
 

SUBMODULE PRESCRIBED BURNING OF SAVANNAS 

WORKSHEET 4-3 

SHEET 1 OF 3 

STEP 1 STEP 2 

A 
 

Area Burned 
by Category 

(specify) 
 

(k ha) 

B 
 

Biomass 
Denisty of 
Savanna 

 
 

(t dm/ha) 

C 
 

Total 
Biomass 

Exposed to 
Burning 

 
(Gg dm) 

D 
 

Fraction 
Actually 
Burned 

E 
 

Quantity 
Actually 
Burned 

F 
 

Fraction of 
Living 

Biomass 
Burned 

G 
 

Quantity of 
Living 

Biomass 
Burned 

 
(Gg dm) 

H 
 

Quantity of 
Dead 

Biomass 
Burned 

 
(Gg dm) 

  C = (A X B)  E = (C x D)  G = (E x F) H = (E – G) 

 3-6  0.25 – 0.50  0.85   

        
 3-6  0.25 – 0.50  0.85   
        
 3-6  0.25 – 0.50  0.85   
        
 3-6  0.25 – 0.50  0.85   
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MODULE AGRICULTURE 

 
SUBMODULE PRESCRIBED BURNING OF SAVANNAS 
WORKSHEET 4-3 

SHEET 2 OF 3 
STEP 3 

I 
Fraction Oxidised of living 

and dead biomass 
 
 
 

J 
Total Biomass Oxidised 

 
 

(Gg dm) 
 

K 
Carbon Fraction of Living & 

Dead Biomass 
 
 

L 
Total Carbon Released 

 
 

(Gg C) 
 

 Living: J = G x I 
Dead: J = H x I  L = (J x K) 

Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  
Living  0.80  0.45  
Dead   1.00  0.40  

Total    

 
MODULE AGRICULTURE 

 
SUBMODULE PRESCRIBED BURNING OF SAVANNAS 
WORKSHEET 4-3 

SHEET 3 OF 3 
STEP 4 STEP 5 

L 
Total Carbon 

Released 
 
 

(Gg C) 

M 
Nitrogen- 

Carbon Ratio 

N 
Total Nitrogen 

Content 
 
 

(Gg N) 

O 
Emissions 

Ratio 

P 
Emissions 

 
 
 

(Gg C or Gg 
N) 

Q 
Conversion 

Ratio 

R 
Emissions from 

Savanna 
Burning 

 
(Gg) 

 
  N = (L x M)  P = (L x O)  R = (PxQ) 

   0.004  16/12 CH4

   0.06  28/12 CO 

 0.006   P = (N x O)  R = (P x Q) 

   0.007  44/28 N2O 

   0.121  46/14 NOx
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Field Burning of Agricultural Residues 
 
Decision Tree: This category is not considered a key source category.  No country or region specific 
activity data on the fraction of the area burned, aboveground biomass density, aboveground biomass 
burned, aboveground biomass that is living, combustion efficiency or emission factors exist.  Thus, we 
used Tier 1 and IPCC default emission factors.  For default values, no IPCC values exist for East 
Africa.  We use default values from West Africa for the South Sudan Zone.  We will enhance our 
ability to more accurately estimate this source through improved estimates of area burned annually in 
the project blocks. 
 
Worksheets: 
 

MODULE AGRICULTURE 
 

SUBMODULE BURNING OF AGRICULTURAL RESIDUES 

WORKSHEET 4-4 

SHEET 1 OF 3 

 STEP 1 STEP 2 STEP 3 

Crops 
 

(specify 
locally 

important 
crops) 

A 
 

Annual 
Production 

 
 

(Gg crop) 

B 
 

Residue to 
Crop Ratio 

C 
 

Quantity of 
Residue 

 
(Gg biomass) 

D 
 

Dry 
Matter 

Fraction 

E 
 

Quantity of 
Dry 

Residue 
 

(Gg dm) 

F 
 

Fraction 
Burned 
in Fields 

G 
 

Fraction 
Oxidized 

H 
 

Total Biomass 
Burned 

 
(Gg dm) 

   C = (A X B)  E = (C x D)   H = (E x F xG) 

Maize  1.0  0.4     

Millet  1.4       
Sorghum  1.4       
Bean  2.1       
         
         
         
         
         
 
 

MODULE AGRICULTURE 
 

SUBMODULE BURNING OF AGRICULTURAL RESIDUES 
WORKSHEET 4-4 

SHEET 2 OF 3 
STEP 4 

 I 
Carbon Fraction of 

Residue 
 

J 
Total Carbon Released 

 
 

(Gg c) 
 

K 
Nitrogen – Carbon 

Ratio 
 
 

L 
Total Nitrogen 

Released 
 
 

(Gg N) 
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  J = (H x I)  L = (J x K) 

Maize .4709  0.02  
Millet   0.016  
Sorghum   0.02  
Bean     

     
     
     
     
     
     
     
     
     
     

     

 
MODULE AGRICULTURE 

 
SUBMODULE BURNING OF AGRICULTURAL RESIDUES 
WORKSHEET 4-4 

SHEET 3 OF 3 
STEP 6 

 
 
 

M 
Emission Ratio 

N 
Emissions 

 
 

(Gg N) 

O 
Conversion Ratio 

P 
Emissions From Field 
burning of Agricultural 

Residues 
 
 
 

(Gg) 
  N = (J x M)  P = (N x O) 

CH4 0.005  16/12  

CO 0.060  28/12  

  N = (L x M)  P = (N x O) 

N2O 0.007  44/28  

NOx 0.121  46/14  
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Source Data:  Data will be collected on area burned, aboveground biomass density, aboveground 
biomass burned, aboveground biomass that is living, and combustion efficiency by project block at the 
outset of the project. Emission factors will be developed for the project area.  This data will be 
crosschecked using remote sensing data and comparisons with results obtained in other similar 
environments in Latin America.   
 
Uncertainty assessment:  The largest source of uncertainty in this submodule will be the estimation of 
the area burned and the biomass density.  We will conduct annual field surveys minimize this 
uncertainty.  Using the Tier 1 method, there will also be uncertainty introduced by the generic 
emissions factors.  Emission factors are unlikely to be known more accurately than ± 30%, and may be 
uncertain to ± 50%.  Developing the emissions factors for a Tier 2 approach will minimize this 
uncertainty. 
 

 50



N2O EMISSIONS FROM SOILS 
 
Direct N2O Emissions from Soils 
 
Decision Tree: This category is likely to be a key source category.  No country or region specific 
activity data on the fertilizer use or organic inputs exist.  Dry pulse production is important in the 
project area, but no data exist to allow us to quantify production.  Organic soils exist in the region, 
however mapping of these soils is only completed at a coarse scale and the types of corps grown on 
these soils are poorly quantified.  Emissions factors do not exist for this region.  Thus, we will use a 
Tier 1 and IPCC default emission factors initially and refine our estimates over the course of the 
project through a targeted research effort.  The overall approach will be to estimate total N2O 
emissions in the project area according to the following equation:   
 

N2O = N2ODIRECT + N2OANIMALS + N2OINDIRECT
 
Worksheets: 
 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5 

SHEET 1 OF 5 DIRECT NITROUS OXIDE EMISSIONS FROM AGRICULTURAL FIELDS, 
EXCLUDING CULTIVATION OF HISTOSOLS 

STEP 1 STEP 2 
A 

Amount of N Input 
 
 
 

(Kg N/yr) 

B 
Emission Factor for Direct 

Emissions 
EF1

 
(kg N2O-N/kg N) 

C 
Direct Soil Emissions 

 
 
 

(Gg N2O-N/yr) 
 

 
 
Type of N input to Soil 

  C = (A x B) x 10-6

Synthetic fertilizer (FSN)  0.0125  

Animal Waste (FAW)  0.0125  

N-Fixing crops (FBN)  0.0125  

Crop Residue (FCR)  0.0125  

Total  

 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5A (SUPPLEMEMNTAL) 

SHEET 1 OF 1 MANURE NITROGEN USED 
 

A 
 

Total Nitrogen 
Excretion 

 
 
 

B 
 

Fraction of 
Nitrogen  burned 

for Fuel 
 
 

C 
 

Fraction of  
Nitrogen 

Excreted During 
Grazing 
FracGRAZ* 

D 
 

Fraction of 
Nitrogen 

Excreted Emitted 
as NOx and NH3

 

E 
 

Sum 
 
 
 
 

F 
 

Manure Nitrogen 
Used (corrected 
for NOx and NH3 

emissions) 
FAW 
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(kg N/yr) 

 
(fraction) 

 
(fraction) 

 
(fraction) 

 

 
(fraction) 

 
(kg N/yr) 

    E = 1-(B + C + D) F = (A x E) 

 0.25  0.2   

   0.2   

   0.2   

*FracGRAZ will be calculated according to Annex 1 of the IPCC Guidelines 
 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5B (SUPPLEMEMNTAL) 

SHEET 1 OF 1 NITROGEN INPUT FROM CROP RESIDUES 
 

A 
 

Production of 
non – N – 

Fixing Crops 
 
 
 

(kg dm/yr) 

B 
 

Fraction of 
Nitrogen  of 
non – N – 

Fixing Crops 
 
 

(kg N/kg dm) 

C 
 

Production of 
Pulses and 
Soybeans 

 
 
 

(kg dm/yr) 

D 
 

Fraction of 
Nitrogen in N 
– Fixing Crops 

 
 
 

(fraction) 
 

E 
 

One minus the 
Fraction of 

Crop Residue 
Removed from 

Field 
 

(fraction) 

F 
 

One minus the 
Fraction of 

Crop Residue 
Burned 

 
 

(fraction) 

G 
 

Nitrogen Input 
from Crop 
Residues 

 
 
 

(kg N/yr) 

      
G = 2 x (A x B + 

C x D) x E X F 
 0.015  0.03    

       

       

 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5 

SHEET 2 OF 5 DIRECT NITROUS OXIDE EMISSIONS FROM CULTIVATION OF HISTOSOLS 
 STEP 3 STEP 4 

D 
 

Area of Cultivated 
Organic Soils 

FOS

 
(ha) 

E 
 

Emissions Factor for 
Direct Emissions  

EF2

 
(kg N2O-N/ha/yr) 

F 
 

Direct Emissions from 
Histosols 

 
 

(Gg N2O-N//yr) 
 

G 
 

Total Direct Emissions 
of N2O 

 
 

(Gg) 

 
 
 

  F = (D x E) X 10-6 G = (C + F)(44/28) 

  10   

  10   

  10   

  10   

Total   
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MODULE AGRICULTURE 

 
SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5 

SHEET 3 OF 5 DIRECT NITROUS OXIDE EMISSIONS FROM GRAZING ANIMALS, 
PASTURE RANGD AND PADDOCK 

 STEP 5 
 

Animal Waste Management 
System 
(AWMS) 

 

A 
Nitrogen Excretion 

Nex(AWMS)

B 
Emission Factor for AWMS 

EF3

 
(kg N2O-N/ha/yr) 

C 
Emission of N2O from 

Grazing Animals 

   C = (A x B)(44/28) X 10-6

Pasture range and paddock  0.02  
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Indirect N2O Emissions 
 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5 

SHEET 5 OF 5 INDIRECT NITROUS OXIDE EMISSIONS FROM ATMOSPHERIC DEPOSITION OF NH3 AND NOX

 STEP 6 
A 

Synthetic 
Fertilizer N 
applied to 
soil, NFERT 

 
 
 

(Kg N/yr) 

B 
Fraction of 
Synthetic 

Fertilizer N 
Applied that 
volatilizes 
FracGASFS 

 
(kg N/kg N) 

 

C 
Amount of 
synthetic N 

applied to soil 
that 

volatilizes 
 
 

(kg N/kg N) 
 

D 
Total N 

Excreted by 
Livestock 

Nex

 
 
 

(kgN/yr) 

E 
Fraction of 

Total Manure 
N Excreted 

that 
Volatilizes 
FracGASM 

 
(kg N/kg N) 

 

F 
Total N 

Excretion by 
Livestock that 

Volatilizes 
 
 
 

(kg N/kg N) 
 

G 
Emission 
Factor 

EF4

 
 
 
 

(kg N2O-N/kg 
N) 
 

H 
Nitrous Oxide 

Emissions 
 
 
 
 
 

(Gg N2O-N/kg 
N) 
 

 
Type of Deposition 

 

  
C = (A x B)   F = D x E)  

H = (C + F) x 
G x 10-6

Total  0.1       0.2 0.01

 
 

MODULE AGRICULTURE 
 

SUBMODULE AGRICULTURAL SOILS 
WORKSHEET 4-5 

SHEET 5 OF 5 INDIRECT NITROUS OXIDE EMISSIONS FROM LEACHING 
 STEP 7 

 
Type of Deposition 

 

I 
Synthetic 

Fertilizer N 
applied to soil, 

NFERT 

 
(Kg N/yr) 

J 
Total N Excreted 

by Livestock 
Nex

 
 

(kgN/yr) 

K 
Fraction of N 
that Leaches 

FracLEACH

 
 

(kg N/kg N) 

L 
Emission Factor 

EF5

 
 
 

(kg N2O-N/kg N) 

M 
Nitrous Oxide 

Emissions from 
Leaching 

 
 

(Gg N2O-N/kg N) 

N 
Total Nitrous 

Oxide 
Emissions 

 
 

(Gg N2O/kg N) 

O 
Total Nitrous 

Oxide Emissions 
 
 
 

(Gg) 
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M = (I + J) x K x 

L X 10-6
N = (H + 
M)(44/28) 

O = G + C+ N 
(G from 

worksheet 4-5, 
sheet 2, step 4; 

C from 
worksheed 4-5 
sheet 3, step 5; 

N from 
worksheet 4-5 

sheet 5, step 8). 

Total   0.3     0.025
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Draft WKIEMP monitoring plan 8/10/2005 

Source Data:  Data will be collected on area of different crops, crop productivity, livestock 
population, manure management, by project block at the outset of the project. This data will 
be crosschecked using remote sensing data. Emission factors will be developed for the project 
area and compared with results obtained in other similar environments in Latin America.   
 
Uncertainty assessment:  The largest source of uncertainty in this submodule will be the 
estimation of the area under different crops, and annual crop productivity.  We will conduct 
annual field surveys minimize this uncertainty.  Methods to limit uncertainties regarding 
animal populations and manure management have been dealt with earlier.  Using the Tier 1 
method, there will also be uncertainty introduced by the generic emissions factors.  Emission 
factors are unlikely to be known more accurately than ± 30%, and may be uncertain to ± 
50%.  Developing the emissions factors for a Tier 2 approach will minimize this uncertainty. 
 
 
CH4 UPTAKE BY SOILS 

 
IPCC national reporting guidelines do not make a provision for accounting for the soil CH4 
sink.  As part of this project, we will develop a system for this accounting that will parallel 
the IPCC system in accounting for soil emissions of N2O 
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