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Abstract
To guide soil fertility investment programmes in sub-Saharan Africa, better understanding is needed of the relative importance of soil and

crop management factors in determining smallholder crop yields and yield variability. Spatial variability in crop yields within farms is

strongly influenced by variation in both current crop management (e.g. planting dates, fertilizer rates) and soil fertility. Variability in soil

fertility is in turn strongly influenced by farmers’ past soil and crop management. The aim of this study was to investigate the relative

importance of soil fertility and crop management factors in determining yield variability and the gap between farmers’ maize yields and

potential yields in western Kenya. Soil fertility status was assessed on 522 farmers’ fields on 60 farms and paired with data on maize-yield and

agronomic management for a sub-sample 159 fields. Soil samples were analysed by wet chemistry methods (1/3 of the samples) and also by

near infrared diffuse reflectance spectroscopy (all samples). Spectral prediction models for different soil indicators were developed to estimate

soil properties for the 2/3 of the samples not analysed by wet chemistry. Because of the complexity of the data set, classification and regression

trees (CART) were used to relate crop yields to soil and management factors. Maize grain yields for fields of different soil fertility status as

classified by farmers were: poor, 0.5–1.1; medium, 1.0–1.8; high, 1.4–2.5 t ha�1. The CART analysis showed resource use intensity, planting

date, and time of planting were the principal variables determining yield, but at low resource intensity, total soil N and soil Olsen P became

important yield-determining factors. Only a small group of plots with high average grain yields (2.5 t ha�1; n = 8) was associated with use of

nutrient inputs and good plant stands, whereas the largest group with low average yields (1.2 t ha�1; n = 90) was associated with soil Olsen P

values of less than 4 mg kg�1. This classification could be useful as a basis for targeting agronomic advice and inputs to farmers. The results

suggest that soil fertility variability patterns on smallholder farms are reinforced by farmers investing more resources on already fertile fields

than on infertile fields. CART proved a useful tool for simplifying analysis and providing robust models linking yield to heterogeneous crop

management and soil variables.
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1. Introduction

It is widely recognized that major investments in

improving soil and crop management are required to raise

agricultural productivity in sub-Saharan Africa. The
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evidence base is widespread negative nutrient balances on

smallholder farms and the large yield gap between potential

and actual yields, both observations being causally related

(Vanlauwe and Giller, 2006). To help target investment

programmes, a better understanding is needed of the relative

importance of soil and crop management factors that limit

smallholder crop yields and cause large variability in yields

within farms. Crop growth potential at a given location is

determined by genotype and climate, whereas actual crop

yields result from the interactions of local growth-limiting

and growth-reducing factors (De Wit, 1992). The variability

in crop growth performance within individual farms

therefore reflects the effects, interactions and spatial

distribution of these factors, many of which are directly

influenced by management decisions. Both long-term and

current soil management decisions influence the prevailing

soil quality, spatio-temporal patterns of resource allocation,

and the timing and effectiveness of agronomic practices (e.g.

time of planting, weeding).

Crop growth variability within African farming systems

has been attributed to: soil properties (e.g. Van Asten, 2003),

agronomic practices (e.g. Mutsaers et al., 1995), farmers’

resource allocation decisions (e.g. Nkonya et al., 2005), or

combinations of these (e.g. Samaké et al., 2006). In western

Kenya, agronomic management decisions play an important

role in determining resource use efficiency and consequently

crop productivity (Tittonell et al., 2007). The gap between

potential and actual maize yields is principally caused by

limiting factors such as N and P availability, and by growth-

reducing factors such as Striga infestation (Tittonell et al.,

2005b). Water availability may also be limiting under

conditions of pronounced soil physical degradation, extra-

ordinarily dry years and/or mid-season droughts, resulting in

substantial yield losses especially for crops grown on steeply

sloping fields subject to run-off (Braun et al., 1997).

In most of these studies, linear regression and correlation

techniques have been used to relate crop yield variability to

agronomic factors. We hypothesise that the different

components of crop growth variability are interdependent,

and that their interaction often leads to reinforcing

synergistic effects; e.g. when crops are planted late on

sloping remote fields of a farm, bare soil surfaces are

exposed to erosion, which further degrades the soil. We can

expect thresholds to exist in relationships between yield and

management or soil fertility variables, leading to non-

linearities. Analysis of such interactions requires application

of multivariate analysis methods and an ability to deal with

non-linear relationships. Farm survey data sets are normally

characterized by a mixture of continuous and categorical

variables, highly skewed data, and large numbers of missing

observations, adding to the complexity of the analysis.

Classification and regression tree (CART) analysis has

increasingly been used in different fields of research for

analysis of problems of this nature, as it has a number of

advantages over alternative methods, such as multivariate

logistic regression (Tsien et al., 1998). Since CART is
inherently non-parametric, no assumptions are made

regarding the underlying distribution of values of the

predictor variables. Thus, CART can handle numerical data

that are highly skewed or multi-modal, as well as category

predictors with either ordinal or non-ordinal structure.

CART has been extensively applied in medical research, as it

is ideally suited to the generation of clinical decision rules

(e.g. Crichton et al., 1997), and to develop risk assessment

tools (e.g. Steadman et al., 2000). CART analysis has rarely

been applied in agricultural research. Shepherd and Walsh

(2002) used classification trees to relate soil fertility case

definitions to reflectance spectra for an extensive library of

African soils. CART analysis has also been used to

characterise the habitat structure of termites in agroforestry

systems (Martius, 2004).

In analysing crop yield variability at farm scale, the use of

CART may help to stratify such variability into classes that

reflect interactions between crop management and soil

fertility, and thus may have practical use for targeting soil

and crop management interventions and advice to farmers.

For example, the relation between input use and yields (i.e.

crop response) has been shown to vary for different soil

quality classes (Vanlauwe et al., 2006). These classes can be

related to local farmers’ soil quality indicators to assist in

efficient targeting of resources through fine-tuned decision-

making. However, the analysis of a sufficiently large number

of cases to establish reliable explanatory models requires

time-consuming and costly soil analyses, which are rarely

feasible. To overcome this limitation, we propose the use of

soil analysis by infrared diffuse reflectance spectroscopy

(IR) in combination with spectral calibration to conventional

wet chemistry methods; soil reflectance itself can also be

used as a soil fertility indicator (Shepherd and Walsh, 2002,

2007). With this technique, soil fertility properties can be

characterized on about 400 samples a day at low cost.

Our objective was to determine the main environmental

and agronomic management factors that determine maize

yields on farmers’ fields across a range of conditions of soils,

climate, population density, and market access in western

Kenya. Understanding the relative importance of these factors

was deemed a necessary step in contributing to the design of

technical interventions to reduce yield gaps for maize, the

major food crop in western Kenya. We used CART to unravel

the relationships between environmental and agronomic

management factors and determine their relative importance

as explanatory variables for crop yield variability.
2. Materials and methods

2.1. The study area

The study included three sites in the highly-populated

region of western Kenya: Aludeka division in Teso district

(08350N; 348190E), Emuhaya division in Vihiga district

(0840N; 348380E) and Shinyalu division in Kakamega district
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(08120N; 348480E), covering an area of 99,420 km2 (68% of

which is considered of high agricultural potential).

Gradients in altitude, rainfall, topography and soil types

as well as differences in population density, ethnic groups,

access to markets, and land use were observed between these

sites, which encompass much of the variability found in the

region. Average farm sizes are small (from 0.5 to 2.0 ha);

population density in the rural areas ranges from 300 to

1300 inhabitants km�2 (Kenya Ministry of Agriculture and

Rural Development, 2004). Rainfall ranges from 1000 to

2000 mm annually and is distributed in two cropping

seasons in most of the region: the long rains from March to

July and the short rains from August to November. The

landscape is gently undulating in the East to fairly flat in the

West, with the exception of scattered groups of hills.

Nitisols, Ferralsols and Acrisols are the predominant soil

types (Jaetzold and Schmidt, 1982). The land use systems

are diversified and range from subsistence smallholdings to

more cash-crop oriented farms, and different types of crop-

livestock systems can be found across localities and between

farmers of different social status. Maize (Zea mays L.),

beans (Phaseolus vulgaris L.), sorghum (Sorghum bicolor

(L.) Moench), cassava (Manihot esculenta Crantz) and

finger millet (Eleusine coracana L.) are the main staple food

crops grown in the region. Further details are given by

Tittonell et al. (2005b,c).

2.2. Field sampling

In 2002, on-farm research was conducted in the three

locations described above to document the magnitude and
Table 1

Explanatory variables used in the CART analysis

Category Variables Detail

General Site Locations within weste

and Shinyalu (Kakame

Wealth Wealth ranking of farm

FSQC Farmers’ soil quality c

fertile (each farmer cla

Management RDH Relative distance from

homestead to the max

SDP Standardiseda delay in

PLD Plant population densi

Weed Weed infestation level

regarded as good prac

(physiological maturity

Striga Striga sp. infestation l

RUI Resource use intensity

nutrient resources (e.g

Soil and landscape Soil wet chemistry Silt + Clay, soil organi

(Ext_P, mg kg�1), exc

cmol(c) kg�1) and soil

Slope Slope of the fields (%)

Soil spectral Principal component s

partial least square reg

predicted soil properti

a Standardisation was done with respect to the planting date considered optimum

make comparisons across sites possible PCA: principal component analysis; PLS
origin of farmer-induced soil fertility gradients within

smallholder farms, and their impact on crop productivity in

relation to crop management factors. Results of studies on

system characterisation and nutrient flows have been

reported in Tittonell et al. (2005b,c), on crop responses to

mineral fertilisers within heterogeneous farms in Vanlauwe

et al. (2006), and on the effect of management regulating

resource flows and use efficiencies in Tittonell et al. (2007).

The present paper uses farm and maize yield data reported

by Tittonell et al. (2005b,c) and uses CART analysis to

elucidate the interacting effects of soil quality and

management factors on crop productivity. Field data were

collected to record different variables that affect maize

productivity, grouping them into three categories: general,

management and soil/landscape factors (Table 1). The latter

included either the wet chemistry analytical results or the

spectral prediction of soil properties. All the variables in

Table 1 were included as candidate explanatory variables for

yield variability in the CART analysis.

Farms identified by key informants were visited and rapid

appraisals were conducted for socio-economic characterisa-

tion, from which data we selected 20 case-study farms per

site for more detailed characterisation. Farms were selected

to capture the socio-economic diversity of households, and

were classified following a wealth ranking approach into

farms of low, medium and high resource endowment (LRE,

MRE and HRE, respectively, ‘Wealth’ in Table 1). At each

farm visited, farmers classified their production units (fields)

in classes of fertile, average, or poor (rotuba sana, rotuba

kadiri and rotuba kidogo, respectively, ‘FSQC’ in Table 1)

based on their own indicators. We walked through each farm
rn Kenya: Aludeka (Teso District), Emuhaya (Vihiga District)

ga District); average rainfall: c. 1400, 1700 and 2000 mm respectively.

s: low, medium and high resource endowment (LRE, MRE and HRE)

lass: classification of the different fields of a farm as poor, average and

ssified their own farm)

the homestead; relating the distance from the sampling point to the

imum distance possible within the farm (furthest field)

the planting date with respect to the optimum for each location

ty (pl m�2) of maize

; score 0 to 3 (absent, low–high). Hand weeding twice in the season is

tice in the area; maize crops that were absent of weeds at sampling

) but were only weeded once in the season scored Weed = 1.

evel; score 0 to 3 (absent, low–high)

; scores 0 to 3 indicating no, few, medium or high use intensity of

. RUI = 1 means use of organic or mineral fertilisers at insufficient rates).

c C (SOC, g kg�1), total soil N (Nt, g kg�1), extractable P

hangeable K+, Ca++ and Mg++ (Exc_K, Exc_Ca and Exc_Mg,

pH in water (1:2.5)

cores of the soil spectral data (PCA); principal component of the

ression analysis (PLSR) relating maize yields to the spectra;

es using the spectral models (PLSR)

for each site (as recommended by local agricultural extension services) to

R: partial least square regression.
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along a transect together with the farmer and discussed each

field in turn, aided by a map of the farm drawn by the farmer.

Maize was the main crop grown in ca. 80% of the fields

surveyed. All the fields in the sample of 60 farms (n = 522)

were classified by farmers into fertile (22% of all sampled

fields), average (40%) or poor (38%), and the area of each

field was measured using a Global Positioning System

(GPS) device. Topsoil (0–15 cm) samples were taken with

an auger at five points per field from all the production units

identified in each case-study farm; the five (sub-)samples

from each field were mixed and one composite sample per

field was sent for analysis (n = 522). The samples were air-

dried, passed through a 2 mm sieve, and stored at room

temperature prior to analysis.

Maize yields were estimated on-farm from non-destruc-

tive plant morphological measurements, using allometric

models described by Tittonell et al. (2005a), in a

representative subset of 159 out of the 522 fields that

included high- and low-yielding fields (as indicated by

farmers). Grain yield was estimated from measurements of

plant height, stem diameter, and ear length taken at around

the ‘milky stage’ of maize during the long rains season of

2002. Information on agronomic management practices was

recorded, including: the cultivar(s) used, the type and

amount of inputs used, timing of crop and soil management

activities and their sequential order within the farm, average

yields obtained, weed infestation levels (estimated through

visual scoring during the cropping season), and general crop

husbandry practices adopted (e.g. plant density) including

the variables under the category ‘Management’ in Table 1.

2.3. Soil analysis

2.3.1. Near infrared spectroscopy

All 522 samples taken from the farms were analysed by

diffuse reflectance spectroscopy, using a FieldSpec FR

spectroradiometer (Analytical Spectral Devices Inc.,

Boulder, Colorado) at wavelengths from 0.35 to 2.5 mm

with a spectral sampling interval of 1 nm using the optical

setup described in Shepherd et al. (2003). Using the spectral

library approach described by Shepherd and Walsh (2002), a

sub-sample of 190 soils was selected for wet chemistry

analysis based on their spectral diversity. This was done by

conducting a principal component analysis of the first

derivative spectra and computing the Euclidean distance

based on the scores of the significant principal components.

Random samples were then selected from each quartile of

the ranked Euclidean distances to make up the 190 samples

for analysis by wet chemistry.

2.3.2. Wet chemistry analysis

The 190 selected soil samples were analysed following

standard methods for tropical soils (Anderson and Ingram,

1993). Soil pH was determined in water using a 1:2.5 soil/

solution ratio. Samples were extracted with 1 M KCl using a

1:10 soil/solution ratio, analysed by NaOH titration for
exchangeable acidity and by atomic absorption spectrometry

for exchangeable Ca and Mg. Samples with pH > 5.5 were

assumed to have zero exchangeable acidity and samples with

pH < 7.5, zero exchangeable Na (all samples in this case).

Samples were extracted with 0.5 M NaHCO3 + 0.01 M

EDTA (pH 8.5, modified Olsen) using a 1:10 soil/solution

ratio and analysed by flame photometer for exchangeable K

and colorimetrically (molybdenum blue) for extractable P.

Organic C (SOC) was determined colorimetrically after

H2SO4 - dichromate oxidation at 1508 C for 30 min. Total N

was determined by Kjeldahl digestion with sulphuric acid

and selenium as a catalyst. Particle-size distribution was

determined using the hydrometer method after pre-treatment

with H2O2 to remove organic matter (Gee and Bauder,

1986). Effective cation-exchange capacity (ECEC) was

calculated as the sum of exchangeable acidity and

exchangeable bases.

2.4. Exploratory analysis of the soil chemistry and

spectral data

The analysis of the variation in the soil data was

performed using Genstat Version 8. The soil variables were

transformed (ln or square root) where necessary to obtain a

normal distribution, and standardized before analysis. A

principal component analysis (PCA) was first done on soil

wet chemistry indicators (Silt + Clay, SOC, total N,

extractable P and K, exchangeable Ca and Mg, and pH;

n = 190) to explore their interrelationships. The PCAyielded

a model in which three PC’s explained 90% of the variation.

PC1, which explained 56% of the variation, had positive

loadings on soil organic C and exchangeable Ca and Mg.

Total N was not included in the analysis, as it added little

information to the model due to its correlation with soil C

(r2 = 0.8). Extractable P and K, and pH had positive loadings

with PC2, and explained a further 24% of the variation in the

data. PC3 explained a further 10% of the remaining

variation, with large positive loadings on extractable P. The

clay + silt content of the soil had intermediate loadings on

PC1 and PC2, and was positively and highly correlated with

the organic C content (r = 0.92). Secondly, a PCA was done

on the first derivative of the soil spectral data to summarise

the spectral soil information in a few components. Seven

PC’s were necessary to explain 95% of the variance in the

soil spectral data, which were then included in the maize-

subset database for later use as explanatory variables for

maize yield, as an alternative to using predicted soil

analytical data (cf. Table 1).

2.5. Prediction of soil properties from the near infrared

spectra

The wet chemistry variables were transformed when

necessary to obtain a normal probability distribution. Partial

least squares regression (PLSR), implemented in The

Unscrambler (Camo Inc.) was used to calibrate the
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transformed wet chemistry variables to the first derivative of

the soil spectral data. Full hold-out-one cross-validation was

done to prevent over-fitting and provide error estimates.

Jack-knifing was done to exclude ‘non-significant’ wave-

bands. Samples with residual y variance >3 residual

standard deviations were omitted as outliers. Models with

reasonable validation results were used to predict the soil

properties for the entire sample population (n = 522). A

fairly good model was obtained for prediction of the

clay + silt content, whereas the spectral predictions of soil

organic C and total N were moderately accurate (Fig. 1). For

extractable P the PLSR model predicted reasonable well in

the low range (measured values < 4.5 mg kg�1) but tended

to under-predict in the high range of extractable P values.

The root mean square errors of these predictions calculated

on the back-transformed data, and based on full hold-out-

one cross-validation, were: clay + silt, 22.5%; C, 1.7 g kg�1;

N, 0.44 g kg�1; available P, 5.4 mg kg�1. The validation of

the spectral models for exchangeable K, for the effective

cation exchange capacity (ECEC), and for pH (not shown)

had r2 values of 0.41, 0.82 and 0.67, respectively, with root

mean square errors of prediction: K, 0.5 cmolc kg�1; ECEC,

1.6 cmolc kg�1; pH, 0.6. Additionally, a PLSR was done

using the maize-subset (n = 159) soil spectral data to predict

maize yields using the first derivative of the spectra—a way

of ‘orientating’ the spectra to the yield variation. The

analysis was done for the square root transformed maize
Fig. 1. Predicted soil fertility indicators using spectral soil analysis plotted against

A: n = 64).
yields as response variable, using the first derivative of the

spectra as independent variables. The cross-validated

model gave r2 = 0.37, indicating that soil reflectance had

some explanatory power in prediction of maize yields. With

strong influence of current agronomic management and

climatic variation, we would not expect high amounts of

variability in yield to be explained by soil quality. These

findings, together with those of previous studies (Tittonell

et al., 2007), guided us in designing the sequencing of

explanatory variables included in the stepwise analysis

using CART (cf. 2.6).

2.6. Classification and regression tree (CART) analysis

The aim of CART (Salford Systems Inc., San Diego, CA,

USA) is to predict or explain the response of a categorical

variable (classification trees) or a continuous variable

(regression trees) from a set of predictor variables using

binary recursive partitioning rules, which are based on

thresholds in categorical or continuous predictor variables

(Breiman et al., 1984; Steinberg and Cola, 1997). CART has

some advantages over more conventional statistical meth-

ods: (i) there are no statistical distribution assumptions for

dependent and independent variables; (ii) a mixture of

categorical and continuous explanatory variables is allowed;

(iii) it is not sensitive to outliers, multi-colinearity,

heteroskedasticity, or distributional error structures that
their measured value using standard wet chemistry methods (n = 159, except
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affect parametric methods; (iv) it has ability to reveal

variable interactions. The flexibility CART provides is well-

suited to the problem in this study of uncovering the

predictive structure of yield variability from diverse

continuous and categorical variables, often having highly

skewed distributions.

CART works by automatically searching through alter-

native values of a predictor variable that maximizes the

quality of the split (separation) of the target variable into two

‘child’ nodes. The optimal splitting rules (e.g. if soil C

concentration <1 g kg�1 then assign to left child node) are

found using brute force search for all levels of all potential

predictor variables. Once a best split is found, CART repeats

the search process recursively for each child node, thereby

creating a tree structure. CART grows very large trees and

then prunes them back to an optimal sized tree based on

relative error rates (misclassification error). Error rates are

derived using cross-validation or hold-out validation. The

trees consist of a number of intermediate, splitting nodes and

a series of terminal nodes (TN) that represent homogeneous

groups of observations in terms of the response variable (e.g.

maize yield). The explanatory variables appear in the

consecutive splitting nodes in a hierarchy of decreasing

explanatory power. Literature and examples on the use of

CART analysis in different branches of science can be found

at: http://www.salford-systems.com/.

The CART analyses were performed using the subset of

samples for which maize yields were available (n = 159).

Maize yield variables (grain, biomass, grain yield per plant,

biomass per plant) were used as the target variable in turn. In

previous studies in this area environmental variables had less

explanatory power than management variables (Tittonell

et al., 2007). Therefore first management or agronomic

practices were tested as explanatory variables together with

general site and wealth characteristics, and in a second step

soil data (spectral and wet chemistry) were added. Thus

CART analyses were done using the following sets of

candidate explanatory variables:

CART model1 :

Maize yield ¼ f ðGeneral;ManagementÞ

CART model2 : Maize yield

¼ f ðGeneral;Management; Soil and landscapeÞ

where, ‘General’, ‘Management’, ‘Soil and landscape’

correspond to the groups of variables presented in

Table 1. In setting up the analysis, all variables within

these three categories are included as candidates and the

program automatically chooses the ones with larger expla-

natory power. The categorical variables Site, Wealth and

FSQC were included in all the analyses to account for

differences in climate and/or other management-related

differences that could have affected crop growth. CART

default settings were used. The optimum tree, within one

standard deviation of the minimum relative error, was
selected using 10-fold cross validation. Further explora-

tory analysis was conducted by either further pruning

(reducing the number of terminal nodes) or growing trees

(increasing the number of terminal nodes). Of particular

interest is the situation where a more parsimonious tree

can be obtained with only small increase in relative error

(RE).

The data was first screened for outliers, and 8 out of 159

cases were omitted to avoid having terminal nodes with few

observations. For example there were four samples with total

soil N >2 g kg�1 that were often distinguished as a separate

group by CART and associated with very high yields

(>4 t ha�1). Variables initially having marked asymmetrical

distributions were also transformed into discrete classes to

give relatively even distribution of numbers of observations

within each class. Most fields sampled had slopes <5%,

some between 5 and 20%, and fewer cases were observed

between 20 and 50%. Due to this distribution pattern the

continuous variable field slope was transformed into classes

of flat (<2%), gently undulating (2–5%), sloping (5–20 or

25%) and steeply sloping (>25%). A similar regrouping was

done for the scorings of resource use intensity (RUI) and

Striga infestation level; for RUI, samples were reclassified

into low (scores 0, 1) and high (scores 2, 3) intensity,

whereas Striga infestation was expressed as ‘‘absence’’

(score 0) and ‘‘presence’’ (score 1–3).
3. Results

3.1. Characterising soil quality and maize yield

variability

Soil properties differed among sites, with Shinyalu

having finer textured soils with greater soil C content and

cation exchange capacity, and Aludeka having lowest

fertility (Fig. 2). Median extractable P concentrations were

strongly deficient in Emuhaya and Shinyalu, at about

2 mg kg�1. Aludeka had a higher median value (4 mg kg�1)

and a larger inter-quartile range than the other sites. In

general, samples with high extractable P values

(>12 mg kg�1) were from fields close to the homesteads,

where ash is commonly added to the soil (see also Tittonell

et al. (2005b,c)). The spectral analysis was sufficiently

sensitive to capture the variation in soil fertility between the

different fields of individual farms, but because there are

generally fewer samples with high nutrient levels available

for calibration, spectral predictions tend to be poorest in the

high range. As expected, different soil quality indicators

showed covariation. For example, the samples with high

predicted values for available P were also those with high

predicted soil C content (Fig. 3). All samples with available

P above 4.5 mg kg�1 had soil C contents greater than

8.5 g kg�1 (equivalent to 1.5% of soil organic matter), and

they correspond to the points in the zone I in the scatter plot

of Fig. 3. Points in the zones II and III of the graph constitute

http://www.salford-systems.com/
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Fig. 2. Range of variation of selected soil properties measured using standard wet chemistry methods across the three sites of western Kenya where the field

samplings for maize yield and soil fertility were performed, Aludeka (Teso district), Emuhaya (Vihiga district) and Shinyalu (Kakamega district). The box-and-

whisker diagrams include the range of 50% of the samples (rectangle), the median (cross bar) and the maximum and minimum values (extreme of the lines).

Fig. 3. Spectral predictions of extractable (Olsen) phosphorus vs. predic-

tions of organic carbon in the soils of all the fields sampled (n = 522). The

dotted lines divide the scatter in three zones such that the observations in

Zone I correspond to high extractable P (>4.5 mg kg�1) and high C (>ca.

8.5 mg kg�1); Zone II corresponds to low extractable P and low C; Zone III

corresponds to low extractable P and high C. The P threshold corresponds to

the values above which the spectral model showed a weaker predictive

capacity; the C threshold is arbitrary, and was delineated to leave all samples

above the P threshold to the right.
the most common cases, corresponding to samples with low

available P values and either low or high soil C contents,

respectively.

Although wide variation in grain yield was observed

within each site, average maize grain yields were poorest in

Aludeka (P < 0.05) (Fig. 4). Only in Emuhaya was there a

consistent positive relationship between yield and resource

endowment, but yields were least in the low resource

endowment category at all three sites. Maize is both a food

and a cash crop for MRE farmers in Emuhaia, who often

grow it in the best soils of the farm (Tittonell et al., 2005b).

Although each individual farmer classified their own soils

as fertile to poor, using their own indicators, maize yields

varied quite consistently between soil quality classes across

sites (and farm types). The largest variability in maize yields

was observed for the fields classified as poor, for which the

coefficient of variation of the measured yields ranged from

70 to more than 100%. In general, the maize yields

measured on the sampled farms were much lower than those

achieved in on-station trials under controlled conditions

(e.g. 6–7 t ha�1; FURP, 1994), which are close to the

potential yields for this agro-ecological zone in western

Kenya.
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Fig. 4. Variation of maize grain yields between farms of different resource

endowment (A) and across different land qualities (fertile, average, poor)

within the farm as perceived by the farmer (B), across the three sites in

western Kenya selected for the study. HRE, MRE, LRE: high, medium and

low resource endowment. Values on top of the bars indicate their standard

deviation.
3.2. Explaining maize yield variability

3.2.1. CART model 1: agronomic practices

The optimum regression tree for maize grain yield as a

function of management had eight terminal nodes (RE: 0.78)

(Fig. 5). Resource use intensity (RUI) was the primary

splitting node: average yields were 1.3 t ha�1 at low RUI

(values <1, i.e. no, few or insufficient input use) and

2.3 t ha�1 at high RUI. At the second level in the hierarchy,

the splitting criteria were delay in planting and planting

density. At Splitting Node 2, early planted crops (relative

delay �0.053; n = 14) had an average maize grain yield of

2.1 t ha�1 (TN 1), which is a good yield for the on-farm

conditions prevailing in western Kenya (Tittonell et al.,

2005b), but late planted crops were the majority (n = 93) and

gave smaller yields of average 1.2 t ha�1. High weed

infestation in this group further reduced yields to 0.5 t ha�1

(TN2).

With high RUI, low planting density (Splitting Node 4)

halved yields compared with high planting density. However,

the three high yielding fields with maize planted at high

density (>7.9 plants m�2; TN8) constitute exceptional cases.

Small yields in crops with high RUI planted at low to

moderate densities were additionally associated with fields

distant from homesteads. For fields close to homesteads,

heavy Striga infestation reduced yields by 40%. The low

number of cases in TN7 and TN5 is due to the small number of
cases in the data set where high resource intensities were

observed in distant fields and where close fields, with medium

or high resource use, were affected by Striga.

3.2.2. CART model 2: integrating agronomic and

environmental factors

The full model including soil variables had similar higher

level structure (top two levels) to the initial model that

considered only agronomic practices (Fig. 6), indicating that

these were the dominant variables influencing yields. The

relative error of the model (RE: 0.79) was not reduced with

respect to CART model 1. At low RUI, early-planted crops

had smaller average yields at low soil N (<1.1 g kg�1) than

at high soil N; whereas late-planted crops had smaller yields

at very low Olsen P (<2 mg kg�1) than at higher Olsen P

concentrations. As in Model 1, at high RUI (right branch)

denser crops (>4.4 pl m�2) performed better than sparser

ones. The total soil N threshold of 1.1 g kg�1 is similar to the

value used by Shepherd and Walsh (2002) to classify

samples of an extensive library of African soils into soil

quality classes. The splitting node 4 contained a large

number of observations (n = 90). Such asymmetrical

distribution of the observations, with the largest number

of cases in TN 3 and TN 4 appeared to be realistic: late

planted crops with low input use were the general case in the

mid-distance to remote fields of the farms visited, and in

those fields P availability tended to be low to extremely low.

The larger number of observations with low P availability

also stands out in Fig. 3 (zones II and III of the scatter plot).

3.2.3. Site differences

The variable ‘Site’, which aggregated climatic variability,

agro-ecological and socio-cultural diversity, was not selected

by CARTas an explanatory variable in the models, suggesting

that site effects were accounted for by the management

variables. However, there were some interesting trends in

management � site interactions (Table 2a). For example, TN

1 (n = 21) had 14 cases from Aludeka, 5 from Emuhaya and 2

from Shinyalu. The splitting node 3 (n = 36) represents fields

that were planted early, such as the home gardens, but cropped

without nutrient inputs (particularly without manure). This is

consistent with previous observations, as manure use is

restricted in Aludeka as compared with the other sites for

several reasons (i.e. a free grazing system that makes manure

collection difficult, lack of knowledge on composting, small

cattle population due to high incidence of tripanosomiasis).

TN 1 is comprised of home gardens that are poor in total soil

N; this is more common in Aludeka, as most of the home

gardens (the fields around the homestead) from Emuhaya and

Shinyalu fell in the strata of the right-hand branch, high

resource use intensity and soils that are consequently more

fertile (cf. Fig. 6).

3.2.4. Farmers’ perception of soil fertility

The observations stratified using CART analysis were

cross-checked with the perception of soil quality of the
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Fig. 5. Classification and regression tree model to describe maize grain yield variability as a function of variables representing agronomic management

decisions (cf. Table 1). White boxes are splitting nodes (SN) and grey boxes are terminal nodes (TN). Within each SN the following information is given: the

variable that splits the group of observations in two ‘child’ nodes, its threshold value and classification criterion (e.g. for SN 4, split left �7.9 means that all

values with plant density< or =7.9 are grouped in SN 5, to the left), the average maize yield of each group (Y), and the number of observations in each group (n).

For the TN, only the two latter are given.
farmers (Table 2b). More than 50% of the fields that were

cropped with high resource use intensity were perceived by

farmers to be fertile at the three sites, and most of the fields

perceived to be poor were planted late with few or no nutrient
Fig. 6. Classification and regression tree model to describe maize grain yield v

decisions plus environmental variables (cf. Table 1). See Fig. 5 for further expla
inputs. Average maize yields (Fig. 7), soil fertility (Table 3)

and agronomic management (Table 4) indicators were

calculated for each stratum. The yields corresponding to

different strata were consistent across sites except for the
ariability as a function of variables representing agronomic management

nation.
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Table 2

Distribution of observations falling: (a) within the classes identified by CART (model 2) across sites, and (b) correspondence between classes distinguished

exclusively by management with the perception of soil fertility by farmers

Site (n) Maize yield (t ha�1) Number of observations per node

TN1 TN2 TN3 TN4 TN5 TN6

(a)

Aludeka (48) 1.1 � 0.6 14 1 20 11 2 0

Emuhaya (52) 1.7 � 0.9 5 5 13 18 8 3

Shinyalu (51) 1.6 � 0.9 2 9 6 22 7 5

Management class CART node Fertile fields (%) Average fields (%) Poor fields (%)

(b)

Low resource use

Planting early SN3 28 28 9

Planting late SN4 51 54 85

High resource use

Sparser crops TN5 18 10 3

Denser crops TN6 4 8 3

SN: splitting node; TN: terminal node.
fields within TN 2 (corresponding to fields planted early,

cropped with no or few inputs and having total soil N

>1.1 g kg�1) (Fig. 7B). Fields cultivated with high resource

use intensity and planted with denser crop stands (TN 6) were

present only in Emuhaya and Shinyalu (cf. Table 2a). They

had less weed infestation and were located at intermediate

distances from the homestead (Table 4). The poorest fields

corresponded to TN 3, with the lowest yields across sites, the

smallest values for most soil fertility indicators, a less intense

management, and a higher frequency of cases from Aludeka.
Fig. 7. Average and standard deviation of maize grain yields for each of the

terminal nodes (TN1 to TN6) from the classification and regression tree

model of Fig. 6(A), and the average and standard deviation for each TN

discriminating by site (B). Lettering on top of the bars in (A) indicates the

statistical significance of the differences between means (P < 0.01).
3.3. Targeting fields with different soil qualities

To target technology recommendations to soil fertility

problem domains that farmers recognise and manage

differently, it is necessary to identify recognisable thresholds

of soil indicators. Soil C and available P are comprehensive

indicators that varied quite independently from one field to

another for the lower range of extractable P values (cf. PCA

results—Section 2.3; cf. also Fig. 3), to which the majority of

the soils sampled belong (cf. Splitting Node 4 in Fig. 6).

Plotting maize grain yield against C and P, and discriminating

the observations that belong to the different CART strata,

showed that the use of only these soil properties is insufficient

to characterise yield variability within farms (Fig. 8). The

variation in yields as affected by these soil properties is best

characterised by boundary line relationships. To illustrate this,

the dotted lines in Fig. 8 are simply ‘hand-drawn’ boundary

lines considering only the observations in TN 3 and TN 4,

which constitute the majority of the observations and are also

those that are of most interest for targeting agronomic

research. For low values of both soil C and available P, maize

yields were invariably low, while for higher values of these

soil indicators yields may be high or low, depending on other

factors (chiefly management factors). In particular, yield

limitation by very low P availability when extractable P

<2 mg kg�1 appeared very clearly. The upper yield level

achieved in fields belonging to TN 3 and TN 4 (ca. 3 t ha�1)

may also be the result of factors that were unaccounted for in

this study, such as the maize genotype.
4. Discussion

4.1. Explaining variability in crop growth

Crop growth performance is often assumed to be the first

visual indication of the existence of spatial variability in soil
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Table 3

Average soil properties of the fields within each terminal node of CART model 2 (Fig. 6)

Criteria Terminal

node

Clay + silt

(%)

SOC

(g kg�1)

TSN

(g kg�1)

Olsen-P

(mg kg�1)

Exch. K +

(cmol kg�1)

ECEC

(cmol kg�1)

pH water

(1:2.5)

Field

slope (%)

Low resource use

Early planting

TSN > 1.1 g kg�1 1 49 � 5 10.3 � 1.8 0.7 � 0.2 2.2 � 0.6 0.35 � 0.3 4.9 � 0.9 5.6 � 0.4 4 � 5

TSN > 1.1 g kg�1 2 67 � 11 15.2 � 3.3 1.4 � 0.2 3.9 � 2.5 0.38 � 0.2 8.4 � 2.5 5.6 � 0.5 7 � 4

Late planting

Olsen-P <2.0 mg kg�1 3 47 � 13 9.1 � 3.1 0.6 � 0.4 1.4 � 0.4 0.18 � 0.1 4.0 � 2.5 5.2 � 0.4 10 � 14

Olsen-P >2.0 mg kg�1 4 60 � 14 13.1 � 3.7 1.0 � 0.6 3.1 � 1.3 0.30 � 0.3 7.3 � 3.0 5.5 � 0.4 8 � 10

High resource use

Sparser crops 5 56 � 14 13.3 � 3.8 1.1 � 0.4 3.3 � 1.5 0.24 � 0.2 6.9 � 3.2 5.6 � 0.5 5 � 5

Denser crops 6 63 � 11 14.6 � 3.0 1.2 � 0.3 3.5 � 1.2 0.16 � 0.1 7.3 � 2.3 5.3 � 0.5 8 � 8

Standard error of the difference 4.6 1.23 0.17 0.39 0.09 1.00 0.15 3.6

P< 0.001 0.001 0.001 0.001 0.014 0.001 0.001 Ns

SOC: Soil organic carbon; TSN: total soil nitrogen; Olsen-P: extractable phosphorus; Exch. K+: exchangeable potassium; ECEC: effective cation exchange

capacity.
fertility status within smallholder farms. However, soil

fertility variables were subservient to crop management

variables in the optimal CART model (cf. Fig. 6) and were

only important at low levels of resource use intensity.

Farmers appear to give priority to crop and soil management

in the fields within their farms that they perceived to be

fertile. Although farmers’ management strategies can be

proactive in some situations (Tabu et al., 2005), in this study

farmers appeared to follow a reactive strategy (i.e. based on

predetermined soil fertility). Thus soil heterogeneity

determines crop yield variability not only through water

or nutrient limitations, but also by influencing farmers’

management decisions, which in turn feedback to reinforce

the soil fertility patterns within farms.

The results of CART model 1 (Fig. 5) were in agreement

with common field observations. First, when no or few

resources are used, reasonably good yields can be produced if
Table 4

Average values of several crop management variables for each of the terminal n

Criteria Terminal

node

Distance to

homesteada

Resource use

intensityb

Low resource use

Early planting

TSN < 1.1 g kg�1 1 0.34 0.5

TSN > 1.1 g kg�1 2 0.46 0.6

Late planting

Olsen-P <2.0 mg kg�1 3 0.51 0.3

Olsen-P >2.0 mg kg�1 4 0.54 0.4

High resource use

Sparser crops 5 0.33 2.4

Denser crops 6 0.41 2.4

Standard error of the difference 0.09 0.19

P< 0.005 0.001

a Expressed in relative terms (distance to the homestead/maximum distance w
b Average values for the score: 0, no use to 3, high use intensity.
c Average values for the score: 0, no infestation to 3, high infestation.
the crops are planted early on relatively good soils; in western

Kenya, the first fields to be planted with maize are the home

gardens, where maize cobs for roasting can be harvested early.

The home gardens are often zones of nutrient concentration

within the farm. Second, when nutrient inputs are used, the

density of the crop stand becomes critical in determining

maize yield (crop architecture). Farmers often adjust crop

density to the perceived fertility of their soils, as seen in other

areas of Africa (e.g. Mutsaers et al., 1995). Third, crops

planted in distant fields normally produce poor yields even

when nutrients are used, due to the poor soil quality of those

fields, leading to weak crop responses to input use (cf.

Wopereis et al., 2006). Fourth, Striga infestation is a more

important factor that reduces yields of crops that receive

nutrient inputs and are planted in close fields, compared with

poor crops grown in remote fields, despite the greater

prevalence of Striga in remote fields.
odes in CART model 2 (Fig. 6)

Delay in

planting (d)

Plant density

(pl. m�2)

Weed infestation

levelc

Striga infestation

levelc

3 3.0 1.1 0.3

5 2.9 1.1 0.0

32 2.5 1.8 0.6

27 3.2 1.3 0.2

10 3.4 1.1 0.4

19 5.6 0.8 0.1

4.1 0.54 0.33 0.26

0.001 0.001 0.005 0.008

ithin the farm, cf. Table 1).
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Fig. 8. Maize grain yield as a function of soil C (A) and extractable P (B). Different symbols indicate observations that were classified within different terminal

nodes (TN1 to TN6) in the CART analysis. The dotted lines were ‘hand drawn’ to represent the upper boundary of the observations corresponding to TN3 and

TN4. Soil data correspond to spectral predictions.
The observations grouped in TN 3 and TN4 of CART

model 2 (Fig. 6) were the most numerous and corresponded

to fields cropped with few or no inputs, planted late (up to 1

month later than the recommended planting dates, Table 4)

and at large relative distances from the homestead

(RDH) > 0.5. Yields in the TN 3 and TN 4 ranged around

1 t ha�1—an average reference yield for the highlands of

East Africa (e.g. Mugendi et al., 1999) but well below the

maximum yields attained in controlled experiments in

western Kenya (FURP, 1994). TN 3 grouped maize yield

observations corresponding to values of extractable P in the

soil<2 mg kg�1; such soils tended to be also poor in organic

C (Fig. 8). An extractable (Olsen) P value of 2 mg kg�1 may

be considered a threshold between ‘extremely poor’ and

‘poor’ soils in terms of P availability (Young, 1997)—note in

Fig. 8 that some grain yields corresponding to TN 3 were

almost nil. Vanlauwe et al. (2006) derived a threshold of

7 mg kg�1 extractable P for maize responses to applied P in

western Kenya. However, the relative response to P in fields

with less than 7 mg g�1 P in that study varied from 0.2 to 1.2.

Such variability cannot be ascribed only to P availability but

to the existence of multiple-limiting factors operating

simultaneously.

The terminal nodes from the CART analysis define

problem domains to which specific intervention strategies

can be targeted. For example, the yield gap between TN 5

and TN 6 could be simply bridged by improved agronomy

(i.e., establishing proper plant stands in this case), whereas

TN 3 and TN 4 would require major soil rehabilitation

including addition of P and organic matter. These results,

however, may be affected by climatic variability. Although

the amount of rainfall registered during the long rains of

2002 was close to the average value for each site (i.e. neither

drought nor excess rainfall were registered), inter-annual

rainfall variability may affect not only the average maize

yields but also the relative influences of the various factors

determining maize productivity. The regional variation in

average rainfall is also closely related to the variation in soil

types across sites (cf. Fig. 2). Finer soil textures in a cooler

and wetter climate lead to greater contents of organic C in

the soils in Shinyalu, where all fields had values>14 g kg�1,
notably larger than all fields from the other two sites.

Although this does not necessarily translate into larger

average yields (cf. Fig. 4), most of the observations in the

highest yielding groups TN 2 and TN 6 were from Shinyalu

(Fig. 7, Table 2a). These observations correspond to home

fields managed with (TN 6) or without (TN 2) inputs, but

with (relatively) fertile soils (cf. Table 3).

4.2. Reconciling soil quality categories with local

knowledge

Farmers’ perception of soil quality ‘niches’ cannot be

reconciled directly with the usual indicators of soil fertility

such as soil C and nutrient contents (cf. Table 3, Fig. 7),

despite methodologies designed to support this approach

(e.g. Barrios et al., 2001). In the first place, because of the

co-existence of multiple nutrient limitations, farmers

perceive soils as having low or high productivity regardless

of their main limitation; the concept of limiting nutrients for

plant growth appears too abstract to farmers (Tittonell et al.,

2005d). During our field assessments, farmers had a more

holistic definition of ‘suitability niches’ to which they

allocated their production activities and resources within

their farms. Suitability not only considers soil fertility but

also other field characteristics such as soil depth, proximity

to woodlots (shading), type of fencing to protect the crop

from roaming livestock, the slope and the relative position of

the field within the farm; i.e. crops grown in remote fields are

more prone to theft. In this sense, the definition of the

variable ‘relative distance to homestead’ (RDH) as a

‘management’ factor in the CART analysis may be

questionable. In the heavily-dissected landscape of western

Kenya, the slope of the fields tends to increase with

increasing distance from the homestead and soil types

naturally vary for fields located at different positions in the

catena (Tittonell et al., 2005c). At the same time, the effort to

carry bulky materials such as manure or compost to fertilise

crops planted far from the homestead is even larger due to

the steep slope of these fields. Thus, the interrelationship

‘distance from the homestead – soil management – current

soil fertility’ is complex in the farms of western Kenya.
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Although the categorisation of field types according to their

location within the farm (e.g. close versus remote fields)

may be practical for certain studies, its arbitrariness makes it

less useful to communicate with farmers when attempting to

target recommendations.

4.3. CART analysis

CART analysis allowed us to: (i) unravel interactions and

combined effects in a complex dataset; (ii) identify

thresholds in the relationship between maize yield and

different soil and management variables; (iii) define problem

domains for targeting different intervention strategies. The

approach provided insight into the structure of interrelation-

ships within the dataset more easily than if multiple

regression modelling had been used, and obviated the need

for data transformations and use of dummy variables to

satisfy assumptions required by parametric approaches. The

in-built cross-validation routine helped to ensure only robust

predictive models were selected. Although some subjective

decisions were required, such as defining cut-off values for

dividing variables into discrete classes, and defining the

acceptable error in the final model, these decisions are also

required with more conventional statistical modelling

approaches: they should be made explicit. Alternative

models that provide a similar degree of predictive power (i.e.

relative error) could also be explored to increase insights

into yield limiting factors.
5. Summary and conclusions

Soil fertility variability within smallholder farms

determines farmers’ management strategies and resource

allocation among farm fields, with more nutrients, labour

and other inputs being apportioned to the most fertile fields.

Over time these resource allocation patterns feed back to

positively reinforce the spatial variation in soil fertility. In

our study, fields that were considered by farmers as poor in

fertility (which were invariably low in soil extractable P)

were managed with few or no inputs and planted late. These

fields represent the majority of the farming area in western

Kenya and need to be targeted with major rehabilitation

strategies to improve land productivity and rural livelihoods.

Such rehabilitation strategies will not, however, translate

into improved crop productivity unless accompanied by

improvements in agronomic practices, such as planting

density and timeliness of planting and weeding. Farmers

already apply more inputs to their most fertile fields for

which only soil fertility maintenance strategies are required.

Use of CART in relation with systematic surveys of

agronomic practice provided a useful approach for analysing

crop production constraints and targeting of intervention

strategies. This approach could be adapted to provide a tool

for monitoring the impact of intervention programmes

designed to improve farm productivity.
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