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Abstract 

The Ethiopian government has set ambitious landscape restoration targets to achieve by 2030. Here, 
we describe a novel approach to identify landscapes to prioritize for tree-planting-based restoration 
interventions in the country. Our approach, which has several advantages compared to existing 
prioritization methods, starts with current land use patterns and potential natural vegetation maps, 
and uses a wide range of other open-access spatial datasets. The approach estimates the benefits of 
restoration on prioritized areas compared to a null model where no prioritization is applied. Across 
identified prioritized landscapes, we then quantify the expected impacts of restoration in terms of the 
number of households that would be reached by interventions, and by estimating carbon 
sequestration and soil conservation potentials. Our analysis indicated that Ethiopia has high potential 
for achieving enhanced restoration targets through landscape prioritization. A total of almost 17 
million hectares of land prioritized for tree-based restoration by our exercise could reach 4 million 
rural households with interventions, with 178 million tonnes of CO2 equivalent sequestered and 160 
million tonnes of soil conserved annually. The prioritized landscapes could be restored with a 
combination of agroforestry, forest enrichment and woodland enrichment practices (on 31%, 8% and 
61% of the total prioritized area, respectively). The Oromia region of Ethiopia was identified as a 
crucial location for intervention, containing almost half of the entire prioritized areas for restoration 
in the country. Our results provide the foundation for further studies to evaluate the potential impacts 
of tree-based restoration programmes in Ethiopia, and more widely, as the methods are of general 
application. Within Ethiopia, investigations in particular support the ex ante impact evaluation of the 
Provision of Adequate Tree Seed Portfolios project, which is developing national capacity to supply 
tree seed for restoration purposes. We discuss our findings in this context.
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1. Introduction 

1.1 Background  

Ethiopia’s agriculture and forestry sectors contribute 43% of GDP in total (2015 figure) and employ 
most of the country’s population (FDRE, 2015). The forestry sector provides a wide range of timber 
and non-timber forest products that are sourced from the wild and cultivated. More than 80% of 
Ethiopia’s tree plantations are grown by smallholders (FDRE, 2017a); and woodfuel and charcoal are 
widely used in rural and peri-urban households as an energy source (FDRE, 2017a). While crucial for 
energy supply, these woodfuel resources are major contributors to greenhouse gas (GHG) emissions 
that contribute to climate change (Bailis et al., 2015). The Ethiopian agricultural sector is currently 
highly vulnerable to climate change due to dependence on rainfall, low productivity and subsistence 
farming practices (Pistorius et al., 2017). Biodiversity loss and ecosystem degradation also have a 
negative effect on crop productivity and food security (FDRE, 2015). Conserving existing natural 
ecosystems and restoring human-made landscapes with trees are therefore urgently needed to 
mitigate anthropogenic effects on the environment and to safeguard ecosystem services (FDRE, 
2017a). 
 
In 2011, Ethiopia enacted a green growth strategy with the vision of becoming a middle-income 
country by 2025, based on a net zero increase in GHG emissions from 2010 levels. These figures are 
set out in the Climate Resilient Green Economy (CRGE) strategy that seeks to promote climate change 
adaptation and mitigation measures, while safeguarding economic growth (FDRE, 2011a, 2011b). 
According to CRGE estimates, in 2010, agriculture and forestry accounted for GHG emissions of a 
massive 50% and 37% of Ethiopia’s total emissions, respectively. Therefore, on the low-carbon-path 
projection estimated within the CRGE, these two sectors are expected to contribute significantly to 
GHG emission reductions; taken together, they account for 80% of the abatement potential (FDRE, 
2011b, p. 28). 
 
As part of its commitments to a green growth strategy nationally and to support climate and 
biodiversity action globally, the Government of Ethiopia in 2014 pledged to restore 15 million hectares 
of degraded landscapes by 2030 (FDRE, 2017b). This commitment is part of pledges made to the global 
Bonn Challenge that intends to restore 350 million hectares of degraded lands worldwide by that date 
(IUCN, 2021b). Ethiopia’s commitments are also part of the regional African Forest Landscape 
Restoration Initiative (AFR100 2021) that aims to restore 100 million hectares of land on the continent 
by the same 2030 date. The country is, furthermore, a major intervention zone for the African Union 
Great Green Wall programme, which intends to restore degraded lands across the entire width of the 
African continent, spanning from Senegal in the west to Djibouti in the east (UNCCD, 2021).  
 
The above commitments involve a range of forest landscape restoration (FLR) approaches that seek 
to return the ecological (e.g., carbon, biodiversity, watershed protection, soil conservation), social and 
economic benefits of forests and trees (Mansourian et al., 2017; GPFLR, 2021; IUCN, 2021a). These 



 
 

2 

approaches can be implemented over a broad range of land use types, from degraded natural forests 
to agricultural land, and are expected to benefit a range of stakeholders (GPFLR, 2021). The benefits 
achieved are expected to support the targets of various UN conventions and initiatives, such as the 
United Nations Convention to Combat Desertification (UNCCD); the Convention on Biological Diversity 
(CBD); the United Nations Framework Convention on Climate Change (UNFCCC); and the Sustainable 
Development Goals (SDGs).  
 
On-the-ground realization of ambitious FLR targets in Ethiopia and globally is a major challenge (Höhl 
et al., 2020). One reason for this is that clearer guidance is needed on how to direct the 
implementation of restoration that considers both environmental and livelihood benefits (livelihood 
benefits are important in themselves, but also crucial for community support for restoration efforts 
that could fail in the absence of local stakeholder buy-in).  
 
A recent publication by Chazdon and Guariguata (2018) provided an overview of the available 
decision-support tools to plan and implement fine-scale restoration interventions. One approach, 
developed by the International Union for Conservation of Nature (IUCN) and the World Resources 
Institute (WRI), is the Restoration Opportunity Assessment Methodology (ROAM) (IUCN & WRI, 2014). 
This was designed as a standard framework for identifying specific priority areas for FLR at a national 
or sub-national level. A few years ago, the WRI in collaboration with the Ministry of Environment, 
Forest and Climate Change (MEFCC) of Ethiopia used the ROAM approach to identify potential and 
priority areas for tree-based restoration in the country. The findings  were subsequently published as 
the National Potential and Priority Maps for Tree-Based Landscape Restoration (MEFCC, 2018). 

1.2 Objectives and outline of this study  

Here, we have developed an alternative approach to ROAM, that is also applicable more widely, for 
identifying target areas for restoration in Ethiopia. Our approach has a number of differences which 
will be summarized later in this working paper. One important reason for our ‘remapping’ is that there 
is a lack of access to the spatial data in the above National Potential and Priority Maps. In our case, 
however, it is possible for users to explore our mapping results directly in digital form (link). 
 
The reasons why we chose Ethiopia to develop and apply our methodology are two-fold: first, is the 
country’s high forest landscape restoration target, as already mentioned above; and second, is the 
Provision of Adequate Tree Seed Portfolios (PATSPO) initiative that is based in Ethiopia (ICRAF, 2017). 
This project (2017-2021) is funded by the Norwegian International Climate and Forest Initiative (NICFI) 
and coordinated by World Agroforestry and the Ethiopian Environment, Forest and Climate Change 
Commission (EFCCC). The PATSPO initiative is developing tree seed supply capacity in Ethiopia to 
support the country’s FLR targets. The focus on tree seed supply is due to lack of access to high-quality 
tree planting material which has been proven to be an important barrier to effective implementation 
of restoration projects in the country (Derero, 2011, 2012; IBC, 2012; Dedefo et al., 2017; Sisay et al., 
2020); note that this constraint also applies globally (Jalonen et al., 2018; Lillesø et al., 2018; Roshetko 
et al., 2018; Höhl et al., 2020). 
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As part of the PATSPO project, we are conducting an ex ante impact evaluation of the environmental 
and livelihood benefits of making high-quality tree seed available and accessible. The current 
prioritization exercise described in this working paper supports this evaluation by indicating priority 
landscapes, the balance between different restoration interventions, and where higher tree seed 
quality could result in the greatest impact (see also other publications in preparation connected with 
PATSPO impact evaluation, e.g., van Schoubroeck et al. (2021, in prep.)). 
 
Our methodology maps priority restoration opportunities by identifying areas of high combined 
potential for reaching desired socioeconomic and environmental outcomes, as it is this combination 
that is essential for successful implementation (Stanturf et al., 2015; Brancalion et al., 2019; FAO & 
WRI, 2021; IUCN, 2021d). In this approach, we first divided the study area into two restoration 
domains and suggested pertinent landscape restoration options which are most suited to biophysical 
conditions. Then we developed and applied a landscape prioritization methodology which allowed us 
to select landscapes with substantially higher potential for delivering restoration benefits. Finally, we 
evaluated the magnitude of the potential impact of restoring the prioritized areas. 

2. Methods 

2.1 Initial overview 

This sub-section provides an overview of the methodology of our study, which is illustrated with a 
flowchart in Figure 1. A full description of the approaches we use will be given in subsequent sub-
sections (2.2 to 2.4). In brief, our approach comprised three steps.  
 
First, we defined the overall land area where tree (or shrub) growth is possible in Ethiopia and assigned 
pertinent landscape restoration options (LROs) (explained further in sub-section 2.2). In short, this 
was achieved by selecting specific potential natural vegetation types (PNVs) and looking at current 
land cover (LC). The areas suitable for tree-based restoration (ASRs) were thereby determined and 
divided into ‘converted’ (where current LC is cropland or pastureland) and ‘unconverted’ (where 
natural forest and woodland ecosystems occur) domains. The LROs, which are ‘agroforestry’ for 
‘converted’ land and ‘forest and woodland enrichment’ for ‘unconverted’ land, were thereby assigned. 
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Second, we developed and applied a multi-indicator methodology to define priority areas for 
restoration (explained in detail in sub-section 2.3). The set of relevant indicators for FLR that we chose 
for prioritization were the following: market access, tree cover change, productivity performance, 
climate mitigation, climate adaptation, soil erosion risk and biodiversity value. For prioritizing within 
‘converted’ and ‘unconverted’ domains, we applied different subsets of these indicators because 
some of the expected benefits of restoration are either different or of varying importance (although 
we do not consider particular restoration benefits to be exclusively linked to a specific domain or LRO). 
For each domain, the value of every applied indicator was estimated country-wide for gridded 
planning units and results normalized within the range of 0 to 1, based on the overall quantile 
distribution (higher values being associated with higher restoration benefits). For each domain, using 
integer linear programming, we determined the overall priority areas for restoration focus (a priority 
area for restoration is also known as a ‘PAR’) that maximizes restoration targets while minimizing the 
amount of space.  
 
The assumption made was that restoration interventions should be targeted to the areas associated 
with the highest cumulative restoration benefits. We set a 20% relative target to specify a minimum 
amount of restoration benefits (or minimum proportion of indicators’ distribution scaled according to 
total abundance in the study area) to be represented in the selected PARs. We then explored the 
efficiency of the above prioritization for individual indicators for each domain. We did this by 
comparing individual indicator values for selected planning units with those of an equal number of 
planning units selected at random (the ‘null model’) within ASRs.  

Figure 1. Flow chart of the current study’s framework. The dashed outlines split the methods of our study into the relevant 
text sub-sections. 
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Third and finally, we estimated the overall impact of implementing restoration on our PARs (as 
detailed in sub-section 2.4). Impact was quantified over the prioritized planning units using the 
indicators developed (as above) for carbon sequestration and soil conservation, with some 
refinement. In addition, ‘rural households reached’ were estimated from open-source spatial datasets 
and the costs of restoration calculated, supported by literature data.  

2.2 Defining restoration domains and landscape restoration options 

In this section, we describe how we defined ‘converted’ and ‘unconverted’ landscape domains and 
LROs for Ethiopia.  
 
The geographic distributions of different PNVs in Ethiopia were first extracted from the Potential 
Natural Vegetation Map of Eastern and Southern Africa (van Breugel et al., 2015). This map is the most 
detailed of its type available, covering all of Ethiopia’s vegetation types. Certain PNVs (e.g., herbaceous 
grassland, deserts and alpine vegetation) were then excluded from the study area in our further 
analysis because they were considered unsuitable for tree-based restoration activities (Figure 2A). The 
descriptions of PNVs which allowed us to assess whether they should or should not be included in the 
analysis were found in the map’s accompanying documentation (Kindt et al., 2011a, 2011b, 2011c). It 
should be noted that these maps can also be used to provide information on suitable native tree 
species for restoration purposes, an important step when it comes to implementation. 
 
Based on the most recent available LC map for Ethiopia (ESA, 2018), we then selected cropland and 
grassland areas to define the ‘agroforestry’ LRO (the ‘converted’ domain). To exclude natural 
grasslands and areas of high livestock intensity pastureland, where agroforestry practices may be 
unsuitable for restoration (Strassburg et al., 2020), we explored the relative geographic extent of 
livestock in Ethiopia using information from the latest version of the Gridded Livestock of the World 
dataset (Gilbert et al., 2018). Only areas where cattle density was above 0.1 and below 20 heads per 
hectare were considered suitable for restoration. For ‘converted’ landscapes, we considered 
agroforestry to be the pertinent tree-based LRO because these areas are managed for agriculture and 
(re)conversion to ‘natural’ ecosystems is unlikely to be feasible, and would represent a threat to the 
livelihoods of local communities. Agroforestry is, however, a form of cropland restoration that 
increases land productivity, helps reduce environmental degradation and diversifies income 
opportunities. In addition, it includes a wide potential (though context-specific) range of tree-based 
practices such as home gardens, farm boundary planting, alley cropping, small-scale woodlots and 
live-fencing. We then overlaid the agroforestry LRO on our PNV map and masked urban areas based 
on the LC classification (ESA, 2018). 
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Figure 2. A) Map of potential natural vegetation types (PNVs) in Ethiopia. PNVs depicted in red are not indicated 
individually but were excluded from the current study (see main text); B) Areas suitable for tree-based restoration in 
Ethiopia, partitioned into two landscape restoration options (agroforestry; and forest and woodland enrichment). 
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The remaining (unmasked) area, where climax vegetation types are closed canopy forests or open 
canopy woodland, wooded grassland or shrubland (our ‘unconverted’ domain) was then assigned to 
the ‘forest and woodland enrichment’ LRO. For ‘unconverted’ landscapes, we considered enrichment 
to be the pertinent LRO because these are areas not under as intense anthropic pressures as 
‘converted’ lands. The enrichment LRO could include a variety of potential tree-based restoration 
interventions depending on the social and biophysical context. 
 
Based on this mapping, the areas suitable overall for tree-based restoration (ASRs), partitioned by the 
two LROs, are indicated in Figure 2B. The two LROs were set as independent areas for subsequent 
prioritization analysis. 

2.3 Multi-indicator prioritization of priority areas for restoration 

Here, we describe the development and application of our methodology for defining PARs within ASRs. 
We explain how we test the efficacy of prioritization for our individual indicators against a null model, 
and how data are combined across indicators to define the final PARs for each of the two relevant 
landscape domains/LROs. 
 
We first selected seven indicators; six biophysical and one socioeconomic, that are useful for 
predicting cumulative restoration benefits, taking into account previous studies on restoration 
prioritization (e.g., Brancalion et al. (2019) and Strassburg et al. (2020)). The seven indicators are 
summarized in Table 1 and details provided in Box 1. They highlight which subsets of indicators (four 
in each case) were applied to ‘converted’ and ‘unconverted’ land domains (see also Figure 1). Since 
the expected benefits of restoration vary for the two domains, the subset of indicators applied to each 
was different. 
 
The analysis and visualization of indicator values were performed in the R statistical environment (R 
Core Team, 2020) using a combination of packages including raster (Hijmans, 2020), terra (Hijmans, 
2021), sf (Pebesma, 2018), rgdal (Bivand et al., 2019) and ggplot2 (Wickham, 2016). To start with, the 
total study area was divided into a grid of 1,337,562 planning units; each of these corresponded in 
area to around 86 hectares (at the equator, i.e., a little less than 1 km squared [= 100 ha]). For each of 
these units, raw indicator values were extracted from datasets and used as the foundation for the 
analysis. Separately, for each of the two land domains (Figure 2B), the planning unit values of each of 
the applied indicators were normalized within the range of 0 to 1, based on the overall quantile 
distribution (deciles), where higher values were associated with higher restoration benefits. 
 
For each of the two domains, an integer linear programming algorithm (Gurobi Optimization & LLC, 
2021) implemented using the prioritizr (version 7.0.1.5) R package (Hanson et al., 2021) was then 
applied to prioritize areas with the highest cumulative restoration benefits. This approach identifies 
‘optimal’ areas (PARs) to maximize the number of targets achieved with the lowest number of 
planning units. A 20% relative target was set across all indicators (that therefore have equal weights 
in the prioritization) to specify the minimum proportion of an indicator’s distribution that should be 
covered by a solution. The proportions were scaled according to the indicators’ total abundance in the 
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study area (prioritizr, 2021). In an exercise to estimate prioritization effectiveness, individual indicator 
values of the prioritized planning units were compared with those of an equal number of planning 
units randomly selected from within ASRs (the ‘null model’). This process of randomly sampling 
planning units was undertaken 1,000 times to produce median values. This was done separately for 
each of the two relevant landscape domains and the results expressed as bar plots. 

Table 1. Summary of indicators applied in our study for predicting cumulative restoration benefits and assessing impact 

Name of 
indicator 

Type of 
indicator 

Key features of indicator 
Landscape 
domain to which 
applied 

If used for 
impact 
assessment (see 
sub-section 2.4) 

Biodiversity 
value 

Biophysical  

Tetrapod species richness 
estimated based on the habitat 
ranges of Ethiopian tetrapod 
species. It indicates the 
biodiversity value of the habitat.  

Unconverted  

Climate 
change 
adaptation 

Biophysical  

Velocity of climate change based 
on current and future climatic 
conditions. It indicates to what 
extent adaptation measures are 
needed.  

Unconverted  

Climate 
change 
mitigation 

Biophysical  

Maximum aboveground biomass 
(AGB) modelled with 90% 
quantile regression, based on an 
existing AGB dataset and 
biophysical conditions. It 
indicates the potential for 
sequestering carbon in AGB. 

Unconverted  

Market 
access 

Socioeconomic 

Travel time to the nearest town 
by walking. It indicates 
accessibility to local markets for 
selling agricultural products.  

Converted  

Productivity 
performance 

Biophysical  

Changes in land productivity, 
estimated based on the 
normalized difference vegetation 
index, from satellite images. It 
indicates the positive or negative 
trend in primary productivity.  

Converted  
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Name of 
indicator 

Type of 
indicator 

Key features of indicator 
Landscape 
domain to which 
applied 

If used for 
impact 
assessment (see 
sub-section 2.4) 

Tree cover 
change 

Biophysical  

Changes in tree cover in the last 
two decades. It indicates where 
tree-based restoration could 
most likely happen given the 
history of cover change.  

Converted  

Erosion risk Biophysical  

Risk of soil erosion estimated 
based on machine learning from 
satellite images. It indicates the 
need of soil conservation 
strategies to prevent soil erosion.  

Unconverted 
and converted  

For further information on each indicator, see Box 1. 

 

Box 1. Details of indicators applied in our study to predict cumulative restoration benefits 
 

Biodiversity value (used as an indicator for ‘unconverted’ land) 

This indicator of the potential biological diversity of each planning unit is based on the habitat 
ranges of local species. Our indicator focused on mammals, reptiles, amphibians and birds because 
open-source spatial data on these species’ habitat ranges are the best that are available (better, 
e.g., than for plants and insects). Previous prioritization exercises globally have also applied such 
tetrapod diversity as an indicator of ecosystem biodiversity (Strassburg et al., 2020). Spatial data on 
our collection of tetrapods were sourced from the IUCN Red List website (IUCN, 2021c) and (for 
birds) from BirdLife International (BirdLife International and Handbook of the Birds of the World, 
2020). The pool of tetrapod species native to Ethiopia was extracted by clipping single species global 
shapefile distributions to the Ethiopian border. Species ranges were then overlaid on our planning 
unit grid and the number of overlapping polygons counted, resulting in species richness estimates. 
Final values were re-scaled 0 to 1 based on the quantile distribution (1 being the highest richness). 
The primary justification for including biodiversity value as an indicator for prioritizing areas for 
forest and woodland enrichment is that tree-based restoration, when done correctly, can benefit 
local biodiversity by providing a favourable habitat matrix (Moguel & Toledo, 1999; Benayas et al., 
2009). In Ethiopia, for example, areas covered by trees and forests provide critical habitat for a large 
portion of the nation’s endemic flora and fauna, including endangered species (Pistorius et al., 
2017). In our analysis, we have only applied the biodiversity indicator to unconverted landscapes, 
though it could also be used for converted landscapes restored by agroforestry practices that 
provide secondary habitat for at least some other species (Kanshie, 2002); (Schroth et al., 2004), 
though perhaps with lower overall weighting. Such an approach could be considered in the future.  
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Climate change adaptation (used as an indicator for ‘unconverted’ land) 

With this indicator we estimate the relative velocity of climate change for each planning unit. It is 
based on the methodology of Hamann et al. (2015), where a velocity of climate change layer is 
computed using the metric developed by Loarie et al. (2009). Our indicator is based on the results 
of a principal component analysis of a sample of climatic variables similar to those used by Hamann 
et al. (2015). Current climate was defined as the monthly averages of maximum and minimum 
temperatures and average precipitations for the years 1979 to 2013 (Karger et al., 2017). Baseline 
and future monthly data were sourced from Chelsa high-resolution time series data (Karger et al., 
2020), while present and future climate variable values were derived using the ENVIREM and dismo 
packages (Title & Bemmels, 2018; Hijmans et al., 2020). Future modelling was based on the period 
2061 to 2080 and the RCP 4.5 pathway. This pathway is an intermediate scenario where emissions 
will peak by 2040 and then decline, bringing a 3°C temperature increase by 2100 (Collins et al., 
2013). The first two principal components of the analysis of multiple climatic variable grids for 
Ethiopia explained an overall high proportion of total variance and were used for further modelling. 
The first component (79% of variation) mostly represented temperature variables, and the second 
(14% of variation) mean annual precipitation and the moisture index (Table 2). Final values of 
climate change velocity for planning units were re-scaled 0 to 1 based on the quantile distribution 
(1 indicating the highest velocity). Justification for the use of this indicator is that tree-based 
restoration can promote landscapes’ adaptive capacities by enhancing ecosystem functionalities 
under multiple environmental change pressures (Trumbore et al., 2015; Mansourian et al., 2017). 
Promoting landscape structural diversity and the presence of microhabitats have, for example, been 
proven to support the safeguarding of forest biodiversity under climate change (Scheffers et al., 
2014; Augustynczik et al., 2019). An increase in canopy cover by trees can also, for example, reduce 
the effects of extreme rainfall events (Zheng et al., 2008) that are expected to become more 
frequent with anthropogenic global warming (Billi et al., 2015; Myhre et al., 2019). Increased tree 
cover can also promote landscape connectivity that supports the adaptive migration of species in 
response to climate change (Noss, 2001). For current purposes, we assume that the effectiveness 
of tree-based interventions is greatest where climate change is happening fastest. 

Table 2. Scores for the first two principal components of an analysis of a sample of climatic variables used for calculating 
the climate change adaptation indicator in Ethiopia 

Climatic	variable	 PC1	 PC2	

Annual	mean	temperature	 0.386	 0.222	

Mean	temperature	of	warmest	quarter	 0.384	 0.157	

Mean	temperature	of	coldest	quarter	 0.364	 0.317	

Annual	precipitation	 -0.291	 0.600	

Precipitation	of	warmest	quarter	 -0.292	 0.307	

Moisture	index	 -0.322	 0.522	

Growing	degree	days	 0.386	 0.221	
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Climate change mitigation (used as an indicator for ‘unconverted’ land) 

With this indicator we estimate the potential gap in aboveground biomass (AGB) (and therefore 
carbon sequestration capability) of each planning unit, considering environmental conditions. Our 
indicator was developed using an approach inspired by Greve et al. (2013) and Brancalion et al. 
(2019). We sourced layers for aboveground biomass and biomass change from Baccini et al. (2021). 
Data on the baseline AGB stock from the year 2003 and on the AGB change from 2003 to 2016 were 
combined to obtain baseline AGB values for the year 2016. To model the relationship between the 
production of biomass and environmental conditions, we performed a quantile regression using a 
similar approach to Greve et al. (2013) that tests for trends in any part of the distribution. The 90% 
quantile was used to model the potential biomass that could be stored against environmental 
factors. Soil data were sourced from SoilGrids (Hengl et al., 2017) and bioclimatic predictors derived 
using the ENVIREM package (Title & Bemmels, 2018), based on environmental data sourced from 
WorldClim (Fick & Hijmans, 2017). Additionally, information on the length of the growing season 
was computed based on consecutive months where rainfall/potential evapotranspiration was > 0.5 
and mean temperature was > 9°C (Thornton et al., 2006). Data were re-sampled to a common 
spatial resolution and grouped in a raster stack. A correlation matrix of dependent and independent 
variables was computed and variables where ρ(X, Y) > 0.4 with a p-value < 0.001 were selected. The 
selected variables were used as predictors of potential AGB in a multivariate linear regression, 
where the response variable was the baseline AGB in Ethiopia. Through a stepwise regression, the 
preferred model was selected by looking at the minimum Akaike information criterion value (Zhang, 
2016). Predictors from the best fitting model were utilized as independent variables in the 90% 
quantile regression model. The final model coefficients used are reported in Table 3. The best fit to 
the data explained 28% of the variability in the AGB baseline (2016 figures) for the 90% quantile. 
The model was then used to make predictions for maximum potential AGB. Baseline AGB values 
were then subtracted to estimate the potential (extra) AGB that could be achieved. The final AGB 
gap was re-scaled 0 to 1 based on the quantile distribution (1 indicating the higher potential for 
carbon sequestration). Justification for this indicator is based on the observation that tree-based 
restoration can have significant positive impacts on landscape productivity that fixes atmospheric 
CO2 (Zomer et al., 2016). Climate change mitigation is a key FLR target (IUCN, 2021e). As well as 
using our measure of climate change mitigation for the identification of PARs, we used this indicator 
as a starting point to assess the impacts of restoration (see sub-section 2.4). 

Table 3. Selected variables used as predictors of potential aboveground biomass in Ethiopia. Results of the best fitting 
90% quantile regression model, with relative coefficients and statistical parameters, are presented 

Variates	 Coefficient	 Standard	error	 t-value	 p-value	

Intercept	 1185.4	 4.433	 267.4	 <	0.0001	
Soil	bulk	density	 2.3	 0.044	 53.1	 <	0.0001	
Temperature	range	 -10.4	 0.252	 -41.4	 <	0.0001	
PET	seasonality	 -0.1	 0.001	 -118.3	 <	0.0001	
Soil	pH	 -12.8	 0.079	 -162.0	 <	0.0001	
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Tree cover change (used as an indicator for ‘converted’ land) 

This indicator was developed from the tree cover maps of Hansen et al. (2013). Extracted values of 
tree cover for individual planning units were re-scaled 0 to 1 based on the quantile distribution (1 
indicating the lowest current tree cover). On top of this, we overlaid information on recent tree 
cover loss (between 2001 and 2019), which is a surrogate for current deforestation pressures 
(Brancalion et al., 2019). For the locations where loss was recent, the value of our indicator was 
reclassified as 0, as we assume that for these recently stripped sites tree replanting is unlikely to 
happen due to local anthropogenic pressures which were responsible for the tree cover loss in the 
first place. Otherwise, our assumption is that areas of lower tree cover have higher potential for 
reaping the benefits of tree planting. 
 
Productivity Performance (used as an indicator for ‘converted’ land) 

As a measure of land productivity performance, we used the Normalized Difference Vegetation 
Index (NDVI). The NDVI, usually estimated by satellite using red and near infrared portions of the 
electromagnetic spectrum, is a common surrogate for net primary productivity (Li et al., 2004) and 
crop productivity (Hill & Donald, 2003). For our indicator, mean annual NDVI was computed from 
bi-weekly images sampled by MODIS (at 300 m) for the baseline period 2008 to 2012 and the 
comparison period 2013 to 2018. The values of mean NDVI were then reclassified based on 
percentile classes and the difference in class number between the baseline and comparison time 
periods computed. The analysis was performed using Trends.Earth (Conservation International, 
2018), a semi-automatic plugin for the QGIS software environment (QGIS Development Team, 
2021). A map of the resulting values had pixel scores ranging from -7 to 8, where values >2 were 
taken to indicate locations improving in productivity and <-2 to indicate locations experiencing a 
loss in productivity. Scores were normalized 0 to 1 based on the quantile distribution, where 1 
represents the most degraded areas that we assume should be priorities for action because the 
potential for increasing productivity through inputs such as tree planting is greatest. 

 
Market access (used as an indicator for ‘converted’ land) 

Our chosen indicator is an estimate of farmers’ access to local markets. It is based on global spatial 
data on accessibility developed by Nelson et al. (2019), where the value of each pixel is the 
estimated travel time in minutes to the nearest urban area (in 2015). Travel time is estimated by 
using a global friction surface which incorporated the best available information on transport 
networks and speeds, off road networks and walking speeds (Weiss et al., 2018). Of the various data 
layers made available by Nelson et al. (2019), we selected the layer which estimated travel times to 
the nearest town with a total population of ≥5,000 people for our analysis. The raster layer was re-
sampled for Ethiopian planning units and scores scaled 0 to 1 based on the quantile distribution (1 
indicating the greatest town/market accessibility). Our justification for this indicator is that 
agroforestry adoption has been observed to be positively influenced by proximity to the nearest 
town (Nkamleu & Manyong, 2005; Beyene et al., 2019). Specifically, access to markets has also been 
observed to be one of the most important variables influencing strategies of tree planting 
(Degrande et al., 2006) and agroforestry practice adoption (Tafere & Nigussie, 2018). Market access 
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has also been suggested by others as a key factor to consider when designing restoration projects 
(FAO & WRI, 2021). 

 
Erosion risk (used as an indicator for ‘unconverted’ and ‘converted’ lands) 

Our chosen indicator estimates potential soil loss within planning units. It is based on a global 
dataset of erosion risk sourced from Vågen and Winowiecki (2019). Data on soil erosion (t ha-1 y-1) 
were re-sampled to match our planning unit grid size and the values scaled 0 to 1 based on the 
quantile distribution (1 indicating the greatest soil erosion risk). Justification for this indicator is that 
soil erosion has multiple negative impacts, including on crop productivity (Lal & Moldenhauer, 1987) 
and the global carbon budget (Lal, 2003), while tree cover can significantly reduce soil erosion and 
runoff (Bennett, 1940). The assumption is that tree-based restoration can have the largest benefits 
where erosion risk is highest. As well as using soil erosion risk for the identification of PARs, we used 
this indicator as a basis to assess the impacts of restoration (see sub-section 2.4). 

2.4 Measuring the impacts of restoration  

Here, we describe how we estimate the overall impact that implementing restoration on our finally 
selected PARs, identified according to the methods described above, would have. This is based on 
carbon sequestration and soil conservation, and through an additional approach based on ‘rural 
households reached’. We also estimate the costs of restoration.  
 
Once PARs for both ‘converted’ and ‘unconverted’ landscape domains had been identified, we 
estimated the potential impacts of their restoration based on our LROs of agroforestry and forest and 
woodland enrichment. We used the metrics already described above for both climate change 
mitigation (carbon sequestration) and soil erosion risk (soil conservation) as a starting point, but with 
some modifications, as described below. 
 
For the estimation of potential carbon sequestration on prioritized planning units in the ‘unconverted’ 
domain, previously calculated AGB values were used (see sub-section 2.3). An estimate of 
sequestration for ‘converted’ landscapes prioritized planning units restored by agroforestry was, 
however, also added. In this case, we assumed an average 10% tree cover increase over baseline 
values, and a linear relationship between tree cover and AGB increase (Zomer et al., 2016). For both 
domains, we also added an estimate of belowground biomass accumulation for prioritized planning 
units, measured as 25% of the extra AGB (Cairns et al., 1997). We then assumed the carbon fraction 
of dry matter was according to IPCC (2003) estimates. 
 
For the estimation of potential soil conservation, we took values of erosion risk as already calculated 
for prioritized planning units for ‘converted’ and ‘unconverted’ domains (sub-section 2.3) and 
computed median values aggregated by PNV type. We set 14% of the erosion risk as the maximum 
increase in soil conservation achievable by intervention (Hengsdijk et al., 2005). 
 
We then used data from a combination of sources to estimate the number of rural households reached 
by intervention across PARs. Data on Ethiopian population densities for 2020 were obtained from 
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WorldPop (WorldPop, 2020), and the percentage of the population of Ethiopia that is rural from the 
latest World Bank indicators (The World Bank, 2019). The population density layer was then adjusted 
by the percentage of the population that is rural to obtain a spatial estimate of rural population 
density. The geographic extent of urban areas was sourced from the land cover map (see sub-section 
2.2) and masked in our analysis. The rural population density layer was then divided by the average 
household size per woreda (woreda = administrative unit) (CSA & ICF, 2016) to produce the final rural 
household density layer. The number of households captured within our PARs was then calculated. 
 
Finally, to estimate the opportunity costs (forgone benefits of current agricultural practices) for the 
restoration of prioritized ‘converted’ lands, we considered cropland and pastureland separately. For 
the former, we used values of crop production in the HarvestChoice database (International Food 
Policy Research Institute, 2020) to estimate the net present value (NPV) of prioritized planning units 
over a 40-year period, applying a discount rate of 5% and assuming a profit margin of 20% (Strassburg 
et al., 2020). For pastureland, the opportunity cost was estimated based on cattle stocking levels in 
the Gridded Livestock of the World v2.0 dataset (Gilbert et al., 2018), combined with average animal 
ages, weights and values of carcases at slaughter in Ethiopia (Senbeta & Megersa, 2019; Tefera et al., 
2019). Again, the NPV for each prioritized planning unit was estimated over a 40-year horizon. The 
restoration costs of restoring landscapes for the ‘unconverted’ land domain’s prioritized planning 
units were sourced from a previous study estimating improved forest management costs in Ethiopia 
(Pistorius et al., 2017). Opportunity costs for the ‘unconverted’ domain were not quantified because 
restoration intervention is not expected to displace the existing practices (e.g., charcoal production, 
harvesting of non-timber forest products). Our methods for costings clearly only provide an 
incomplete picture, but they represent a starting point for encompassing ‘converted’ and 
‘unconverted’ lands into estimates. 
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3. Results 

3.1 Effectiveness of indicators for planning unit prioritization 

The geographic distribution of normalized values for each of our individual indicators is presented in 
the Appendix. Figure 3 provides a summary for each of our two land domains on the effectiveness of 
our planning unit prioritization processes. The box plots show the original values of individual 
indicators (not normalized in this case for better comparison) for planning units that were prioritized 
by our multi-indicator approach compared to the values for an equal random sample of planning units. 
The plots demonstrate that the extent of effectiveness of prioritization varied for the different 
indicators and domains, but that in all cases prioritization provided clear benefits. 

3.2 Locations of priority areas for restoration 

The extent of the geographical areas identified for our two LROs were 29 million hectares (M ha) for 
agroforestry and 73 M ha for forest and woodland enrichment (Figure 2B; 10 and 63 M ha for forests 
and woodlands, respectively, though these are not differentiated in the figure). These hectarages 

Figure 3. Box plots comparing the distribution of indicator values for prioritized versus randomly sampled (null scenario) 
planning units in the two domains (‘converted’ and ‘unconverted’). Results are shown for each of the four indicators 
applied to each domain for the identification of overall priority areas for restoration in Ethiopia (indicators are explained 
in Box 1). Lower and upper box limits correspond to the first (25%) and third (75%) quartiles of the distribution, and the 
middle line corresponds to the median value of the distribution. 
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together mean that our identified ASRs, before prioritization, amounted to 89% of Ethiopia’s land 
area. 
 
Figure 4 presents the spatial distribution of the final PARs within each of the two LROs, based on our 
multi-indicator prioritization approach (for interested readers, this map can be compared with the 
individual indicator maps in the Appendix already mentioned). The spatial distribution of the PARs 
indicated that the highest restoration benefits were predicted for the Ethiopian highlands (compare 
Figure 4 with the vegetation patterns of Figure 2A). In addition, a large portion of the PARs (for 
‘unconverted’ landscapes) were located in Borena zone (Oromia region) in the Southern lowlands, and 
for ‘converted’ and ‘unconverted’ landscapes in Harerge and Shewa zones (also in the Oromia region). 
For ‘converted’ landscapes, our model predicted high restoration benefits across the Tigray region. 
 
In contrast, a low occurrence of PARs was observed for the Gambela and Benishangul-Gumuz regions 
in the western part of the country, where most intact extant natural forest patches are located. A low 
density of PARs was also observed in the Afar and Somali regions of north-eastern and south-eastern 
Ethiopia, respectively. The areas we deemed unsuitable for tree-based restoration, i.e., outside our 
ASRs and therefore not assessed for restoration prioritization in this study, are mostly distributed 
within these two regions. 

Figure 4. Spatial distribution of all suitable areas and priority areas for the restoration of ‘converted’ and ‘unconverted’ 
landscapes with tree-based approaches in Ethiopia (priority areas [PARs in the key] are a subset of all suitable areas [ASRs 
in the key]). 
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Further information summarizing PARs is presented in Table 4. About two-thirds of total PAR coverage 
was assigned to the forest and woodland enrichment LRO (11.6 M ha) and a third to the agroforestry 
LRO (5.3 M ha, adding up to 16.9 M ha of PARs in total). Within the forest and woodland enrichment 
LRO, around 11% of planning units assigned as PAR were located in forest PNVs and the remainder in 
woodland (or shrubland) PNVs (separate calculations from Table 4, details available on request). The 
proportion of land coverage of PARs as a proportion of all ASRs varied slightly by LRO, being 19% for 
agroforestry and 16% for forest and woodland enrichment. 

Table 4. Total areas suitable for tree-based restoration (ASRs) and priority areas for restoration (PARs) for Ethiopia, by 
domain/landscape restoration option 

Figure 5 summarizes how PARs split across Ethiopia’s regions by LRO/landscape domain. About 8 M 
ha in total (5.8 M ha for the forest and woodland enrichment LRO and 2.2 M ha for agroforestry) of 
PARs were assigned to the Oromia region, which represented 25% of the land area of this region as a 
whole. A similar proportion of the Southern Nations, Nationalities and Peoples (SNNP) region was 
covered by PARs, though the overall land area involved, while still relatively large, was reduced to 
about 2.6 M ha, due to this region being smaller in total area than the Oromia region. Whereas for 
most regions it was the forest and woodland enrichment LRO that had most of the PAR coverage, in 

Domain	 LRO	 ASRs		
(million	ha)	

PARs		
(million	ha)	

Percent	
(PARs/ASRs)	

‘Converted’		 Agroforestry	 28.3	 5.3	 19%	

‘Unconverted’	 Forest	and	woodland	enrichment	 71.6	 11.6	 16%	

Figure 5. Bar chart showing priority areas for restoration (PARs, in M ha) within a selection of Ethiopia’s regions, identified 
by landscape restoration option. On the vertical axis the percentage of the total land area of the region covered by PARs 
is given. Regions with only small land areas assigned as PARs are not included in the chart. 
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Amhara and Tigray regions it was PARs in the agroforestry LRO that dominated. The Afar and Gambela 
Peoples regions only contained small totals for PARs of 0.5 M ha or less, and these also constituted a 
small proportion of the two regions’ total land areas (5% or less). The Addis Ababa, Benishangul-
Gumuz, Dire Dawa and Harari regions were not included in Figure 5, as none of them contributed more 
than 100 thousand ha in PARs. 
 
Figure 6 shows how PARs split across LC classes and PNVs for Ethiopia by LRO. For the agroforestry 
LRO, 98% of PARs were located in cropland and only 2% in grassland, while the dominant PNV was 
Afromontane undifferentiated forest (57% of PARs), followed by Acacia-Commiphora deciduous 
bushland (21%) and then dry combretum wooded grassland (15%). For the forest and woodland 
enrichment LRO, 76% of PARs were located in shrub cover areas, 16% in tree cover areas and 7% in 
grassland, while the dominant PNV was Acacia-Commiphora deciduous bushland (70%), followed by 
dry combretum wooded grassland (17%) and then Afromontane undifferentiated forest (11%). There 
was, therefore, a difference in rank ordering of the dominant PNVs between the two LROs. 

Figure 6. Land cover classes (A and B) and potential natural vegetation types (PNVs) (C and D) for prioritized areas for 
restoration in agroforestry (A and C) and forest and woodland (B and D) LROs in Ethiopia. PNVs with a total area of 
less than 50 thousand ha were not included in plots. 
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3.3 The predicted impacts of implementing restoration on PARs 

Table 5 summarizes the potential impacts of implementing restoration on our defined PARs. The 
estimates of extra soil conserved were 8.7 and 9.6 t ha-1 y-1 for agroforestry, and forest and woodland 
enrichment, respectively. Extra C-sequestration was estimated to be approximately 0.3 and 2.8 tC ha-

1 y-1 for agroforestry, and forest and woodland enrichment, respectively. In addition, the estimate was 
that 2.8 and 1.2 million households would potentially benefit from implementation of tree-based 
restoration for agroforestry, and forest and woodland enrichment, respectively. 
 
In terms of our calculated costs associated with restoration, these were estimated at USD 368 and 281 
ha-1 for agroforestry, and forest and woodland enrichment, respectively (for agroforestry the 
calculation is the opportunity cost, whereas for forest and woodland enrichment this represents the 
actual restoration cost, as detailed in sub-section 2.4). 
 
Summing figures over PARs, restoration was expected to contribute annually to the extra conservation 
of 160 megatonnes (Mt) of soil and the extra sequestration of 50 Mt of carbon, this last figure 
corresponding to approximately 178 Mt of CO2 eq. Conversely, the total cost we calculated associated 
with restoring the identified PARs amounted to an estimated USD 5.2 billion. 

 

Table 5. Impact metrics and costs associated with priority areas for restoration in Ethiopia 

LRO 

Extra	soil	
conserved	
(t	ha-1	y-1)	

Extra	C-
sequestration	
(t	ha-1	y-1)	

Cost	of	intervention	
(USD	ha-1)	

Rural		
households	
reached	
(n)	mean	 SD	 mean	 SD	 mean	 SD	

Agroforestry	 8.7	 0.9	 0.3	 0.1	 368	 424	 2,791,703	

Forest	and	
woodland	
enrichment	

9.6	 2.2	 2.8	 0.5	 281*	 -	 1,172,344	

4. Discussion 

In this working paper, we have described a new multi-indicator approach that applies an integer linear 
programming algorithm for the identification of priority areas for tree-based restoration (PARs). The 
method was inspired by previous studies of Brancalion et al. (2019) and Strassburg et al. (2020), who 
both developed and applied a multi-indicator approach to restoration planning. We have applied our 
new approach to Ethiopia, where a comparison of our thus-designated PAR planning units with 
randomly sampled units for a range of indicators has shown the effectiveness of the method. The total 
PARs determined, of 16.9 M ha, approximates Ethiopia’s pledged areas of degraded landscapes for 
restoration of 15 M ha in total by 2030 (FDRE, 2017b), and our exercise thus provides a useful guide 
in determining restoration priorities at an appropriate magnitude. 
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Our new approach constitutes a parallel and sometimes advantageous one compared to past 
prioritization methods. Previous work using the ROAM approach (IUCN & WRI, 2014) to set priorities 
for restoration in Ethiopia (MEFCC, 2018) was significantly different in method from our current 
approach in several features, as summarized in Table 6. Advantages of our current approach include 
its ability to rely on open-access datasets that can easily be updated for the analysis as newer versions 
become available, its low cost, our linkage of the approach to impact assessment, and the ability to 
replicate it elsewhere. This last feature is highly desirable when regional initiatives (in the case of 
Africa, initiatives such as AFR100) are considered that would greatly benefit from the use of a 
standardized prioritization approach. We estimate our method requires comparable analytical skills 
to ROAM, but its lower cost of implementation is a significant benefit. 
 

Table 6. Comparison between our study and a previously published study on defining priority restoration opportunities in 
Ethiopia 

Feature	 A)	MEFCC	&		
WRI	(2018)	 B)	Our	study	 Comment	

Repeatability	 	 	

A)	Vague	description	of	methodology;	not	
repeatable.		
B)	Logical	methodology	accompanied	by	a	
thorough	description;	repeatable.			

Ground-truthing	
	 	

A)	Identified	priority	areas	verified	with	field	data	
collection	so	that	an	accuracy	value	could	be	
assigned	to	the	analysis.	
B)	Efficiency	of	the	prioritization	verified	through	
comparison	with	a	‘null	model’,	but	no	ground-
truthing	is	carried	out.	

Data	 	 	

A)	Included	outdated	and	limited-access	datasets.	
B)	Based	on	open-source	datasets	that	can	be	
easily	updated.	

Impact	
assessment	 	 	

A)	Does	not	estimate	the	impact	of	implementing	
restoration	actions.	
B)	Impact	estimation	based	on	the	indicators	
developed	for	prioritization	and	some	additional	
open-source	global	datasets.	

Priority	areas	
	 	

A)	Three	different	priority	levels	identified,	down	
to	the	lowest	administrative	unit	level.		
B)	One	priority	level	identified,	down	to	the	
planning	unit	level	(~1km2).	

Restoration	
interventions	 	 	

A)	Numerous	interventions	are	described,	and	
their	feasibility	assessed	in	relation	to	the	
country’s	biophysical	conditions,	although	results	
are	not	displayed	spatially.	
B)	Fewer	interventions	are	distinguished,	but	
these	are	displayed	spatially.		

Participation	
	 	

A)	Involved	numerous	stakeholders,	who	gathered	
in	workshops	to	write	the	methodology	and	
conceptualize	the	study.		
B)	Not	equally	inclusive	of	stakeholders.		
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Feature	 A)	MEFCC	&		
WRI	(2018)	 B)	Our	study	 Comment	

Cost	
	 	

A)	High.	The	process	involved	numerous	actors	
(governmental	and	research	institutions)	and	
design	phases,	with	in-person	workshops	to	
gather	expertise.	Additional	funds	had	to	be	
allocated	to	carry	out	fieldwork	for	the	ground-
truthing	exercise.		
B)	Low.	Process	handled	internally	by	the	
analyzers,	based	on	remote	work	without	
fieldwork	or	face-to-face	design	phases.	

 

The results of our prioritization exercise for Ethiopia showed that around half of the total PARs were 
located in the Oromia region, which we therefore suggest is a location of key importance for the 
Ethiopian government to consider for reaching the nations’ restoration targets. An initial comparison 
with protected area maps (results not shown) also suggests that 14% of our identified PARs fall within 
the borders of protected areas (UNEP-WCMC & IUCN, 2021). Since these are under different 
governance regimes from the remaining 86% of PARs, restoration actions in them may require 
especially careful mediation with local and regional stakeholders. 
 
A feature of our prioritization approach is that it is underpinned by an assessment of baseline habitat 
PNVs to exclude from consideration non-woody ecosystems where tree planting could cause harm to 
local biodiversity (Phifer et al., 2017). Africa’s native grassy ecosystems, for example, are under major 
threat, in some cases due to inappropriate targeting for afforestation (Bond et al., 2019). Their 
planting with trees not only damages biodiversity, but may not be effective in fixing carbon (Lewis et 
al., 2019). In our analysis, our choice of PNVs to which tree-based restoration measures could be 
targeted may over-emphasize tree-based opportunities, but a useful feature of our approach is that it 
is easy to repeat the calculations with different (smaller) target sets of PNVs, if so desired. Our current 
analysis is unequivocal in revealing that the majority of PARs were once forested areas for ‘converted’ 
landscapes, with about 3 M ha of Afromontane forest cleared for agricultural use. This corresponds 
with other Ethiopian studies which indicate that the extent of agricultural expansion has been 
dependent on forest loss (Bishaw, 2001; Deribew & Dalacho, 2019; Tadesse et al., 2020). 

 
A useful feature of the documentation of the PNV maps that we used as a starting point for our analysis 
is the list of native tree species provided for each PNV (van Breugel et al., 2015). This information 
provides an initial guide for which trees to focus on (a tool for this purpose in Ethiopia has just become 
available (Kindt et al., 2021b)) when designing appropriate agroforestry, and forest and woodland 
enrichment, implementation measures. There are a number of advantages in focusing on local tree 
species during implementation, which include adaptation to the environment (further information for 
trees in Ethiopia in this regard is available from (Kindt et al., 2021a)) and the protection of biodiversity. 
 
The actual implementation of restoration on PARs is of course a complex and context-specific process 
in which it is essential to work with local communities (Höhl et al., 2020) and take into account a range 
of national targets and government strategies, and PARs could be further prioritized for different 
purposes. Our analysis thus only represents a starting point. It could, for example, be built on, using 
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our methodological pipeline, to consider the connectivity between PARs (Hanson et al., 2021), which 
could provide biodiversity and logistical benefits, though some analyses would require significantly 
longer run times. At a simple level, logistically, isolated prioritized planning units would of course likely 
be of lower importance from an implementation perspective (see link). 
 
As already alluded to above, we are involved in the PATSPO initiative that focuses on tree seed supply 
for the effective implementation of restoration projects in Ethiopia. The PATSPO project is doing this 
by describing existing tree seed sources, establishing new ones, and planting breeding seedling 
orchards for tree improvement and as high-quality adapted seed sources. The current prioritization 
exercise, combined with information on tree species’ distribution, helps inform which trees should be 
the focus of PATSPO’s seed supply efforts, and indicates where the building of tree ‘seed system’ 
infrastructure is most needed in Ethiopia for restoration implementation (according to current results, 
especially in the Oromia region).  
 
Our evaluation of impacts of restoration on PARs in the current study, which were significant, also 
provides the starting point for an ex ante impact evaluation of the environmental and livelihood 
benefits of the PATSPO project. The impact assessment of PATSPO, which considers not only the 
availability and accessibility of tree seed per se, but what additional benefits using higher quality tree 
seeds and seedlings bring, is currently underway, guided by our current findings (van Schoubroeck et 
al. (2021, in prep.)). This analysis will include estimating economic benefits for smallholder farmers 
and local communities, as understanding how they benefit from restoration is crucial in predicting 
restoration success. 
 
Our impact numbers presented in the current study suggest that restoring 16.9 M ha of PARs would 
sequester 178 Mt CO2 eq. annually, which is approximately four times the abatement potential 
assumed for forest management, reforestation, afforestation and pastureland improvement activities 
in Ethiopia’s CRGE strategy (FDRE, 2011b). Our estimate of annual sequestration potential for 
unconverted landscapes of 2.8 tC ha-1 y-1, equivalent to 10.1 tCO2e ha-1 y-1, has an estimated cost of 
around USD 10 per tCO2e, if it is considered that planted trees will subtract CO2e from the atmosphere 
for a period of 30 years. 

5. Conclusion 

We have devised a new method for setting priority areas for tree-based restoration (PARs) and applied 
it to Ethiopia. Our multi-indicator, linear programming approach identified a total of 16.9 M ha of PARs 
in Ethiopia, with about two-thirds in ‘unconverted’ landscapes that can be targeted with forest and 
woodland enrichment-based restoration, and one-third in ‘converted’ landscapes that can be targeted 
with agroforestry. The prioritization approach we have used estimates the benefits of restoration 
compared to a null model of no prioritization, and indicates the impacts of restoration interventions. 
Our approach, which has several advantages compared to existing prioritization methods, can be 
applied widely.  
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Appendix 

  

The geographic distributions of normalized values for the seven individual indicators used 
to define priority areas for tree-based restoration in Ethiopia, based on a multi-indicator 
approach (see Box 1 for detailed information on indicators). 
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