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Abstract  
Malawi is often described as a country that faces increasing soil deterioration exacerbated by 
climate change, which affects crop productivity and food security. Research and development 
efforts to improve food security through restoration of soil fertility have included promotion of 
nitrogen fixing trees or fertilizer trees in food farming systems. This working paper provides 
evidence of the causal impact of the adoption of fertilizer trees on food security on smallholder 
farmers in Malawi. The impact assessment methodology used an Endogenous Switching 
Regression model that accounts for selection bias. The main drivers of the decision to adopt 
fertilizer trees include households’ perception of land degradation, training on agroforestry and 
farm assets. Results of the impact assessment model show evidence that fertilizer trees improve 
food security for adopters in maize-based mixed farming systems through increased in average 
value of food production and maize productivity. Policies that address barriers to adoption of 
fertilizer trees and scale up adoption of these technologies will be beneficial to restore soil 
fertility in degraded land and improve food security of smallholder farmers. 
 
Keywords: fertilizer trees, soil fertility, food security, Endogenous switching regression, maize 
based farming system 
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1. Introduction 
 
In the last few decades, there have been considerable efforts by the international community to 
develop strategies that reduce global poverty and hunger. Despite the modest success in reducing 
food insecurity, there are still around 795 million people worldwide who remain undernourished, 
the majority of whom are in sub-Saharan Africa (FAO, IFAD, & WFP, 2014). In many of these 
impoverished communities, agriculture still remains as one of the most important sectors in 
driving economic growth and reducing poverty. However, one of the main constraints faced by 
smallholder farmers is low agricultural productivity. In fact, sub-Saharan Africa is the only 
region in the world where food insecurity is driven by insufficient food production. This is in 
contrast with other regions in the world where aggregate food production has increased through 
higher yields and food insecurity results more from poor distribution and lack of consumer 
purchasing power (Sanchez, 2002).  
 
In Malawi, like the rest of the developing world, food productivity is threatened by soil 
degradation, population pressure, low-use of improved inputs, particularly inorganic fertilizer 
and poor agricultural practices. Soil erosion and declining soil fertility (in terms of nitrogen (N), 
phosphorus (P) and potassium (K)) are the key productivity constrains for farmers in Malawi 
(Akinnifesi et al. 2007). Farmers continuously cultivate the staple crop maize, with little or no 
rotations with leguminous crops that fix nitrogen into the soil contributing to a steady decline in 
fertility (Manfongoya et al. 2006, Sileshi et al. 2010). Furthermore, the country’s population 
growth rate of 2.8% (National Statistics Office, 2012) creates pressure on the natural resource 
base leading to greater land degradation which further contributes to low productivity (Bojo, 
1996). While the use of inorganic fertilizer may contribute to improving soil fertility, the high 
cost limits farmers’ uptake (FAO, 2011).   
 
The Intergovernmental Panel on Climate Change (IPCC) predicts increased climate uncertainties 
in Malawi with higher temperatures and possibly higher rainfall. These extreme weather events 
will affect poor farmers in developing countries like Malawi more due to lack mitigation 
strategies (IPCC, 2014). In addition to these average changes, seasonal and spatial variations in 
rainfall patterns are expected to occur, manifesting in terms of increased incidences of droughts 
and floods.  Empirical studies have demonstrated that the adverse effects of climate change lead 
to decreases in yields and are one of the greatest causes of crop failure in small scale farming in 
Malawi (Makoka, 2008; Coulibaly et al., 2015a).  
 
In the face of growing population, higher food demand and fixed agricultural land, sustainable 
intensification is widely viewed as an important strategy to respond to the challenges of low 
yields, environmental degradation and adaptation to climate change (Antle and Diagana, 2003). 
Adoption of agroforestry technologies (incorporation of trees in farming systems) is increasingly 
being promoted as a promising solution that provides mitigation and adaptation benefits by 
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sequestering carbon, improving food security and building resilience to negative impacts of 
climate change and variability. Nitrogen fixing tree species and shrubs (fertilizer trees) 
intercropped with field crops can provide considerable amount of organic matter, fix nitrogen 
(N) into the soil and help to increase productivity. For example, in maize based systems, 
Akinnifesi et al (2010) demonstrate that maize yield increases by 583% depending on fertilizer 
tree species used.   
 
While there are a number of field trials that prove the productivity gains of using fertilizer trees, 
a lot of these have been limited to testing the yield response rate of crops such as maize to 
different tree-species. Beyond these biophysical relations between fertilizer tree adoption and 
yield, one aspect that has received little attention is if there is empirical evidence that proves if 
fertilizer trees actually increase household food security.  A few studies have employed a cost 
benefit analysis and an econometric approach to assess the impact of soil fertility replenishment 
technologies on yield and production risks (for example, Ajayi, 2007) and household welfare (for 
example, Place et al., 2005). The methodologies used were important in demonstrating the 
economic and welfare gains provided by the soil fertility technologies. However, they failed to 
attribute the increased outcome to the targeted agroforestry technology since they did not control 
for farmers’ self-selection on the adoption decision and a number of other actors that could also 
affect the welfare benefits. So far, little is known on the causal impact of fertilizer trees on 
household food security. We contribute to this lean literature by analysing the effects of fertilizer 
trees on household food security using empirical data from maize farmers in Malawi. We use a 
treatment effect model that explicitly controls for non-random selection bias to quantitatively 
assess the causal impacts of fertilizer tree adoption on food security.  
 
The remaining part of this paper is organized as follows: Section 2 presents background 
information on dissemination of fertilizer trees in Malawi; Section 3 describes the methods used 
to assess the economic impact of technology adoption; Section 4 presents the data used for the 
analysis and the results of the descriptive statistics; Section 5 discusses the findings of the 
econometric model on adoption and impact assessment; and Section 6 lays out concluding 
remarks and suggests some policy implications. 
 
2. Overview of Agroforestry Production for Food Security in Malawi  
 
The benefits of nitrogen fixing trees and shrubs such as Faidherbia albida (Msangu), Cajanus 
cajan (pigeon peas) and other leguminous crops have been known to government extension 
officers and farmers in Malawi. However, their use by farmers for soil fertility management and 
in improving food production has been limited. The early efforts to promote widespread use of 
fertilizer trees in agricultural systems in Malawi were through ADDFOOD project implemented 
by the Ministry of Agriculture with financial support from the European Union, and the Malawi 
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Agroforestry Extension Project (MAFE)1 in the early 1990s. These initiatives were the first to 
promote extensive diffusion of fertilizer trees including systematically dispersed planting of 
Faidherbia albida, alley cropping, undersowing and intercropping with exotic species such as 
Acacia angustissima, Calliandra calothyrsus, Leucana spp and Gliricidia sepium and sesbania 
sesban.  
 
Building on the results of nearly two decades of on-station and on-farm adaptive research on 
sustainable, farmer-friendly and economically viable agroforestry practices, the World 
Agroforestry Centre (ICRAF) launched the Malawi Agroforestry Food Security Programme 
(AFSP) in 2007 with the financial support of the Irish Government through Irish Aid. This four-
year program was implemented jointly with government departments (Extension Services, 
Agricultural Research Services, Land Resource Conservation) and a local research and training 
institution (Bunda College of Agriculture) from 2007 to 2011. The goal of AFSP was to provide 
agroforestry options to smallholder farmers in Malawi to enable them to increase food security 
through improvements in soil fertility, and increase nutrition security and income diversification 
through fruit production. The programme also aimed to increase the supply of timber for 
fuelwood and other uses and thereby reduce pressure on natural forests and woodlands (ICRAF, 
2011). Fertilizer tree technologies are based on planting fast growing and nitrogen fixing 
leguminous trees and shrubs that produce large quantities of biomass that easily decompose and 
release nitrogen for crop growth (Kwesiga and Coe, 1994).  Other fertilizer trees such as 
Faidherbia albida can be planted in crop fields in appropriate agro-ecological zones but take 
longer before benefits are seen. They do, however, provide nitrogen rich leaf litter and protection 
against extreme temperatures for several decades (60+ years) before the need for replanting.  
 
Fertilizer trees contribute to food security through increased crop productivity. Cropping systems 
that combine cereals, fertilizer trees and small doses of inorganic fertilizer have been shown to 
produce greater food crop yields than those that do not (Akinnifesi et al., 2007). Improved food 
productivity and crop diversification represent a buffer mechanism against harvest failure due to 
climate and other environmental hazards. Using data from long term field trials, Sileshi et al. 
(2012) show that crop yields under agroforestry systems are more stable over time compared to 
crop yields from non-agroforestry fields. This is due to increased soil water in fields under 
agroforestry (Chirwa et al., 2007), reduced evaporation losses and protection of crops from 
excessive heat on fields that have increased tree cover. In addition to providing large amounts of 
nitrogen, foliage of fertilizer trees help increase soil carbon when incorporated in the soil (Beedy 
et al, 2010) and increase soil water holding capacity. The increased soil water enables crop 
growth during dry spells. Faidherbia trees reduce moisture loss through evaporation and protect 
																																																													
1	The	Malawi Agroforestry Extension Project (MAFE) was established in 1992 and was implemented through 
a cooperative grant between USAID and Washington State University under the Department of Land 
Resources Conservation in the Ministry of Agriculture and Irrigation. The project was operational for a 10 year 
period between 1992-2002.	
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crops growing under the canopy from heat stress. Syampugani et al. (2010) stress that a mix of 
different trees and crop varieties in a field, increases resilience to erratic weather changes and 
decreases the probability of pest and diseases. 
 

The first phase of the AFSP programme (AFSP I) 
was implemented in 11 of the 28 districts of 
Malawi. These districts were selected as they 
represent eight agro-systems and the country’s 
cultural diversity. Farmers in each district were 
given their choice of fertilizer trees species to the 
extent supply and logistics allowed (Beedy et al. 
2012). The most commonly adopted species were 
Tephrosia candida and Sesbania sesban (93%) and 
smaller amounts of Gliricidia sepium and 
Faidherbia albida (ICRAF, 2011). The first two 
species are fast growing nitrogen-fixing shrubs 

planted usually in relay intercropping with maize. These legumes are planted two to four weeks 
after sowing maize and are left to grow in the off-season after the maize has been harvested 
(Phiri et al. 1999, Akinnifesi, 2010). Farmers clear-cut the legumes and incorporate the 
biomasss/ foliage into the soil as they prepare land for the next season. Further detailed 
description of the technologies can be found in Phiri et al. (1999) and Akinnifesi et al. (2010).  
 
In order to reach large numbers of farmers with agroforestry tree seeds and seedlings, as well as 
encourage them to incorporate these in their production system, ICRAF partnered with extension 
workers from the government, NGOs, community based organizations and lead farmers. The 
network of government extension agents is not well developed in all villages covered by the 
project. In areas with underrepresentation of extension agents, the project had to rely on 
community-based organizations (CBOs) and lead farmers to reach more farmers. This introduced 
a possibility of selection bias in the programme evaluation as farmer members of the CBO or 
lead farmers may be more inclined to distribute the agroforestry species primarily to their 
members or to their friends. Participation of farmers was voluntary at the village level. This leads 
to a second source of selection bias as most participating farmers or those who expected to 
benefit from the technology, for example through increased soil fertility, might be 
disproportionately represented among those who signed up for the programme. The project was 
designed to target the most vulnerable and poor populations. A third source of selection bias is 
introduced as adopters of the technology may appear to be poorest farmers in the community or 
with fewer assets than non-adopters which may result in an overestimation of the project impact. 
In order to address the project impact in a rigorous way, it is necessary to use an evaluation 
methodology that takes into account all these potential sources of selection bias. 
 

Maize intercropped with Tephrosia in 
Lilongwe, Malawi. Photo by Olu Ajayi 
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3. Methods 

3.1 Conceptual framework 
 
There are several evaluation approaches that can be used to assess the impact of adoption of 
fertilizer trees practices. The choice of the appropriate evaluation method depends on how the 
selection process to receive treatment (in this case fertilizer tree adoption) was conducted 
(Blundell and Costa Dias, 2000). In the AFSP I, the selection of beneficiaries and non-
beneficiaries was not randomized as we have highlighted in the previous section. This implies 
that the population of farmers in the different regions of Malawi was not equally and randomly 
exposed to the new technology under assessment. As a result, the treatment and control groups 
may have different characteristics. Rosenbaum and Rubin (1983, 1985) point out that when 
adopters and non-adopters have similar characteristics their outcomes can be directly compared. 
However, such comparison is invalid when they have different characteristics. Hence comparing 
these two groups using simple difference in yields means between adopters and non-adopters 
alone is not sufficient to establish causal effects.  
 
Given the likely differences in households’ characteristics in the present study, we used a quasi-
experimental design to evaluate the impact of adoption of fertilizer trees on food security.   
The average treatment effect (𝛼) defined by Rosenbaum and Rubin (1983) in a counterfactual 
framework can be written as: 
𝛼 = 𝐸(𝑌!! − 𝑌!!)           (1) 
Where 𝑌!! is yield for household i with the treatment and 𝑌!! is yield for household i without 
treatment.  A fundamental problem in estimating this equation is that we cannot observe both 𝑌!! 
and 𝑌!! simultaneously. At a given time t, a household is either an adopter or non-adopter of 
agroforestry practices. A household cannot be in both states at the same time. So, what we 
observe at a given time is: 
𝑌! = 𝐷! 𝑌!! + (1− 𝐷!)(𝑌!!)  with 𝐷! = 0,1       (2) 
The average treatment effect for household with a probability P of participating in the program 
can be specified as: 
𝛼 = 𝑃𝐸 𝑌! 𝐷 = 1 − 𝐸 𝑌! 𝐷 = 1 + 1− 𝑃 𝐸 𝑌! 𝐷 = 0 − 𝐸(𝑌! 𝐷 = 0)    
 (3) 
 
The above equation implies that the effect of adoption on the entire sample is a weighted average 
of the effect of adoption on the adopters (treated households) and the non-adopters (control 
households). The issue that arises with this equation is that the counterfactual 𝐸 𝑌! 𝐷 = 1 and 
𝐸(𝑌! 𝐷 = 0) is not observed leading to a problem of missing data. Also, the decision of 
household to adopt fertilizer trees is explained by observed and unobserved characteristics 
resulting in a problem of self-selection. For a non-randomized design, several econometric 
approaches can be used to address the problem of selection bias including propensity matching 
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score and instrumental IV methods. Propensity Score Matching (PSM) accounts for bias due to 
observable characteristics (Heckman and Vytlacil, 2007). This assumption can sometimes be 
difficult to justify since unobservable factors such as skills and motivation can also influence the 
decision to adopt a technology. This may result in inconsistent estimates if this is not accounted 
for in the estimation.  To overcome this problem, IV instrumental variable approaches and 
endogenous treatment effect models, which account for the endogeneity of the adoption decision, 
are used.  
 
Instrumental variable estimation techniques are built on finding valid instruments that are 
correlated with the decision to adopt but uncorrelated with the unobserved factors that affect the 
outcome. A main constraint in using this approach is finding valid instruments for the adoption 
variable.  Such methods of addressing selection bias, assume also that there is only an intercept 
shift with respect to the outcome variable and not a slope shift in the outcome variable (Alene 
and Manyong, 2007, Shiferaw et al. 2014). To overcome this issue, the endogenous switching 
regression (ESR) that relaxes the above assumption is applied. This model estimates two separate 
outcome equations, respectively for adopters and non-adopters, conditional on a selection 
equation.  

 
3.2 Modeling food security impacts of fertilizer tree adoption 
 
To analyze the impact of fertilizer tree adoption on food security, we use a two-stage endogenous 
switching regression model that accounts for bias due to unobservable variables. Our model 
follows closely the empirical applications of other studies that analyzed adoption impacts, while 
controlling for selection bias due to both observable and unobservable characteristics, of 
improved technologies such as improved varieties of wheat (Shiferaw et al. 2014); pigeon pea 
(Asfaw et al, 2012); pineapple (Kleeman and Abdulai, 2013); tissue culture banana (Kabunga et 
al. 2014) and improved fallows (Kantashula and Mungatana, 2013).    
In the first stage, we performed a probit estimation.  
A farm household i chooses to adopt agroforestry technologies if they generate perceived net 
benefit. This is specified as follows: 

𝐴!∗ =𝑊!𝛾 + 𝜇!      with 𝐴! =
1 𝑖𝑓 𝐴!∗ > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (4) 

Where 𝐴!∗ is the latent variable that captures the expected benefit from adopting fertilizer trees. A 
farm household i chooses to adopt the technology if the expected benefit is positive. 𝐴! 
represents the binary variable adoption or non-adoption of fertilizer trees. It is the treatment 
variable and is equal to 1 if the household adopts fertilizer trees and 0 otherwise.  
𝑊! represents a vector of variables that affect the probability of adopting fertilizer trees.  Several 
types of control variables are introduced in the model based on the literature in the first stage of 
determining the probability of adopting fertilizer trees technologies. First, the traditional 
household socio-demographic characteristics including age, gender, education level of the 
household head, household size, farm asset, and farm size, affect the probability of adopting 
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fertilizer trees. We consider also the farm agro-ecological conditions proxied by household 
perception of land degradation as a main challenge in their farm over the past years. Households 
who perceive the soil fertility status of their fields as being good may be less impacted by 
climate shocks and less likely to adopt the technologies. Quantity of inorganic fertilizer applied 
on food crops may influence soil fertility and the probability to adopt the nitrogen fixing trees. 
Access to extension services, particularly training in agroforestry management provide technical 
information to farmers and build their skills and as a matter of fact facilitate adoption of 
agroforestry. Distance to extension services and market for farm inputs were included and 
capture barriers faced by farm households in deciding to adopt fertilizer trees.  
 
Climatic variables incorporated in the model are households’ experience with flood or high 
rainfall and drought or erratic rainfall over the past five years before the survey, as well as 
household perception of rainfall and temperature changes over the past 20 years. Other studies 
(Di Falco et al. 2011a, Di Falco et al. 2011b) also incorporated proxies of climate change in the 
form of long-term trends in temperature and rainfall. This was done by spatially interpolating 
these climatic variables and by using the geographic coordinates of each household to impute 
specific rainfall and temperature values for each respondent. However, as the geographical 
coordinates were only collected at the village level, the lack of adequate spatial variation in the 
climatic variables precluded us from using these household specific proxies. Nevertheless, using 
households’ actual experience with climate stress reflects the impact of climate shocks on their 
farms and will bring good insights into how households use agroforestry technologies to cope 
with climate variability. 
 
In the second stage, the differential impact of covariates on the food security of the group of 
adopters and non-adopters is modeled simultaneously through an endogenous switching regime 
model. The outcome equation is specified for each regime as: 
Regime 1: 𝑦!! = 𝑋!!𝛽! + 𝜀!!    if 𝐴! = 1                                                   (5) 
Regime 2: 𝑦!! = 𝑋!!𝛽! + 𝜀!!   if 𝐴! = 0               (6) 
Where 𝑦! is the outcome, food security variable. We use several outcome variables as indicators 
of food security. The most common approaches used to measure food security rely on per capita 
food consumption which is based on food expenditures. The food insecurity indicators frequently 
used include food consumption, anthropometric indicators or health data (Kabunga, 2014). 
However, these measurements are data intensive, often times suffer from recall bias and are 
relatively costly to implement (de Haen et al. 2011, Shiferaw, 2014). In this study, we focused on 
the availability dimension of food security. We used one of the recommended FAO indicators of 
availability, which is the average value of food production. In the analysis, we will use the 
average value of food productivity which corresponds to the average value of food production 
per acre of land cultivated for food crops. In addition to this indicator, we used maize 
productivity, as it is a major staple crop in Malawi’s agricultural system. Food availability will 
also be determined by the productivity of this crop.  
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X represents a vector of covariates and β are parameters to be estimated. Residuals ε from 
equation (2) and 𝜇 in equation (1) are assumed to be jointly normally distributed with a mean of 
zero and a covariance matrix specified as: 

𝑐𝑜𝑣 𝜇, 𝜀!,𝜀! =
𝜎!! 𝜎!" 𝜎!!
𝜎!" 𝜎!! 𝜎!!
𝜎!! 𝜎!! 𝜎!

        (7) 

Where 𝜎!! = 𝑣𝑎𝑟(𝜀!), 𝜎!! = 𝑣𝑎𝑟(𝜀!), 𝜎! = 𝑣𝑎𝑟(𝜇),  𝜎!" = 𝑐𝑜𝑣𝑎𝑟(𝜀!𝜀!),  𝜎!! = 𝑐𝑜𝑣𝑎𝑟(𝜀!𝜇) 

𝜎!! = 𝑐𝑜𝑣𝑎𝑟(𝜀!𝜇) . The variance of 𝜇 is set to zero since the γ coefficients in the selection 
equation are only estimable up to a scale factor (Maddala 1983, Greene 2011). Besides 𝜎!"= 0 
since 𝑦!! and 𝑦!! are never observed at the same time.  
 
Given the selection bias due to some unobservable factors, the error terms in the selection 
equation (adoption of fertilizer trees) and outcome regression (food security) are correlated. 
Therefore 𝜎!! and 𝜎!! are non-zero and estimates of the covariance terms provide a test for 
endogeneity. If these terms are statistically significant, it will indicate that there is sample 
selectivity bias due to unobservable factors.  We will also confirm the sensitivity of our estimates 
to the presence of unobserved selection bias by performing a Rosenbaum test applied to the 
propensity matching approach and following the procedure developed by Rosenbaum (2002).  
 
The expected value of 𝜀! and 𝜀! conditional on the sample selection can be expressed as: 
𝐸 𝜀!! 𝐴! = 1 = 𝜎!!

∅(!!!)
!(!!!)

          (8) 

                           = 𝜎!!𝜆!! 

𝐸 𝜀!! 𝐴! = 0 = 𝜎!!
∅(!!!)
!(!!!)

          (9) 

                           =    𝜎!!𝜆!!         
Where ∅() and Φ(.) are the probability and cumulative distribution functions of the standard 
normal distribution function, respectively. λi1 and λi2 are the Inverse Mills Ratio (IMR) 
computed from the selection equation and included in the outcome regression to correct for the 
selection bias. We used the full information maximum likelihood approach that jointly estimates 
parameters in the selection and the outcome regression, in order to have more efficient 
parameters. 
 
Equations (5) and (6) can then be specified as: 
𝑦!! = 𝑋!𝛽! + 𝜎!!𝜆!! + 𝜉!!     if 𝐴! = 1       
 (10) 
𝑦!! = 𝑋!𝛽! + 𝜎!!𝜆!! + 𝜉!!     if 𝐴! = 0       
 (11) 
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The ESR is identified by construction through non-linearities of λi1 and λi2 (Lokshin and Sajaia, 
2004). However, it is also recommended to use a selection instrument in addition to these non-
linearities in order to improve the model identification. In our study, we used variables related to 
source of information and knowledge following several other studies (Di Falco et al. 2011, 
Shiferaw et al. 2014). Participation in agroforestry training was therefore included as a selection 
instrument. Agroforestry training provides farmers with knowledge on agroforestry management, 
which can influence their decision to adopt fertilizer trees but do not have a direct effect on the 
outcome, the food security variable. We tested the validity of this instrument by running a 
regression against the dependent variable in the first and the second stages. Good instruments are 
expected to influence the decision to adopt fertilizer trees but not the outcome variable. The 
standard errors in equation (10) and (11) are bootstrapped to produce more efficient estimates.  
 
4. Data and descriptive statistics 

4.1 Farm household survey 
 
This study builds on data collected from the north, 
central and south regions of Malawi using a stratified 
multi-stage sampling design. To ensure 
representativeness, districts were first stratified by 
geographical location. In each of the three regions, two 
districts with significant levels of adoption of 
agroforestry practices were selected based on 
monitoring reports. In total, six (6) districts were 
selected: Karonga and Mzimba in the north, Salima and 
Kasungu in the central, and Thyolo and Mulanje in the 
south. In each of these districts, two (2) Extension 
Planning Areas (EPAS) were randomly drawn and 
thirty (30) households also randomly chosen to ensure 
equal probability of representation in the sample. In 
each of the EPAs, households were selected randomly 
based on criteria provided by extension agents. The 
control group was also randomly selected in the same 
village among farmers who did not use any agroforestry 

practices. The districts are inhabited by different ethnic 
groups of different socio-cultural backgrounds, which 

may have an influence on adoption decisions of agroforestry practices. In total, 338 households 
were selected to participate in the survey. Figure 1 shows the location of these districts.  
 
The survey was conducted between July and August 2014, which is a post-harvest period. This 
made it easy for farmers to recall harvest information in the season prior to the survey. Farmers 

Source: Coulibaly et al., 2015b 
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had enough time to answer questions because they were not busy in the fields. The structured 
questionnaire enquired on household socio-economic characteristics, asset ownership, crop and 
agroforestry production, food consumption and sales, adoption of agroforestry practices, climate 
shocks, households’ perception of climate change, food gap, and respondents’ perception of 
agroforestry. The questionnaire was pre-tested and administered by a team of well-trained and 
experienced enumerators with a minimum qualification of a first university degree and fluency in 
the local languages of the sampled districts.  
 
40% of the sampled households are classified as adopters of fertilizer trees implying they were 
growing one or more fertilizer tree species. Figure 2 presents the different fertilizer tree species 
adopted by farmers by district (please see also annex for illustration). Farmers in the sampled 
districts grew a total of 13 different tree species. The most widely adopted species in these 
districts are Faidherbia albida, Tephrosia spp and Gliricidia sepium. We define adopters as 
farmers who use any fertilizer tree species or combination of species among those shown in 
figure 1, while non-adopters include farmers who did not use any of these species. Maize is the 
main food crop grown by all households surveyed. Other commonly grown food crops include 
groundnuts, beans, vegetables and rice. 
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Figure 2. Fertilizer tree species adopted across districts 

 

 
 
During the survey, sampled farmers were asked to indicate their perceived importance of 
adopting agroforestry practices such as fertilizer trees. Farmers’ subjective responses, which are 
reported in figure 3, show that improved soil fertility is perceived as the main benefit derived 
from practicing agroforestry. In addition to enhancing soil fertility, agroforestry is also perceived 
to increase supply of food for both home consumption (fruits and vegetables) and livestock 
(fodder), and to increase energy supply sources through fuel-wood for home consumption and/or 
for sale.  
 
Figure 3. Farmers’ perception on the importance of agroforestry technologies 
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4.2 Descriptive statistics 
 
Table 1 shows the summary statistics of sampled farmers. There are only a few significant 
differences between adopters of fertilizer trees and non-adopters in terms of household and farm 
characters as well as perceptions and shocks. Farmers that adopted fertilizer tress are better-
educated, mostly engaged in non-farming activities, received training in agroforestry and have 
higher asset ownership. Adopters also perceive their land to have been degraded over time 
compared to non-adopters. All other covariates are statistically non-significant.    
 
Considering the food security outcomes shown in the top half of table 1, adopters of fertilizer 
trees appear to be more food secure as they reported significantly higher maize yields and value 
of food crops compared to non-adopters. This is also illustrated and is visualized in figures 4 and 
5, which show the cumulative distribution functions (CDFs) of maize yield and value of food 
production, respectively. A Kolmogorov–Smirnov test confirms that the CDFs of fertilizer tree 
adopters stochastically dominates that of non-adopters for maize yield (p < 0.01) and value of 
maize yield (p < 0.1).  
 
While these descriptive statistics suggest that observed differences between adopters and non-
adopters are minimal, there still might be systematic differences that are unobserved. Therefore, 
without estimating treatment effects, that at least controls for unobserved heterogeneity between 
farmers, we cannot be certain whether the observed differences in maize yield and value of food 
crops are causal effects of adoption of fertilizer trees or the result of other confounding factors. 
We analyzed treatment effects, using endogenous switching regression in the next section.  
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Table 1: General differences between fertilizer tree adopters and non-adopters 

 Non-adopters 
N=203 

Adopters  
N=135 

Outcome variables   
Maize yield (kg/acre) 478.749 597.665* 
 (384.30) (459.77) 
Value of food crops MWK/acre# 45172.920 59567.560** 
 (43833.33) (54250.99) 

Household characteristics   

Household size 2.768 3.059 
 (1.54) (1.47) 
Male headed household (dummy) 0.704 0.689 
 (0.46) (0.46) 
Age of the household head (years) 48.621 46.785 
 (15.56) (13.48) 
Age of the household head squared (years) 2604.916 2369.244 
 (1599.58) (1352.86) 
Secondary education for household (dummy) 0.330 0.459* 
 (0.47) (0.50) 
Household head main occupation is farming (dummy) 0.892 0.770** 
 (0.31) (0.42) 

Farm characteristics   
Farm size (acres) 3.920 4.088 
 (3.37) (3.12) 
Total livestock unit 1.165 1.290 
 (1.97) (1.83) 
Farm asset index -0.253 0.360*** 
 (1.13) (1.92) 
Distance to output market (km) 7.741 6.964 
 (7.03) (9.98) 
Distance to government extension (km) 8.233 8.761 
 (7.55) (7.31) 
Quantity of fertilizer applied to maize (kg) 4.375 4.517 
 (1.65) (1.52) 
Household received agroforestry training (dummy) 0.483 0.652** 
 (0.50) (0.48) 

Household perceptions and shocks   
Rainfall has decreased in the last 20 years 0.601 0.674 
 (0.49) (0.47) 
Temperature has increased in the past 20 years 0.384 0.430 
 (0.49) (0.50) 
Experienced drought in the past 5 years (dummy) 0.788 0.800 
 (0.41) (0.40) 
Experienced floods in the past 5 years (dummy) 0.118 0.104 
 (0.32) (0.31) 
Land degraded over time (dummy) 0.650 0.770* 
 (0.48) (0.42) 

Notes: Mean values are shown with standard deviations in parenthesis; *, **, *** denotes significance level at 10%, 
5% and 1%, respectively. 

# MWK: Malawian Kwacha 
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Figure 4. Cumulative distribution of maize yield by fertilizer tree adoption 

 
 

Figure 5. Cumulative distribution of value of maize by fertilizer tree adoption 
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5. Econometric results 

5.1 Determinants of adoption of fertilizer trees 
 
We start by analyzing the factors that influence households to adopt fertilizer trees presented in 
table 2. The results are from the selection equation that is estimated jointly with the value of food 
produced. The results reveal that the main factors that significantly influence the tree fertilizer 
adoption decision are farming as an occupation, farm asset, agroforestry training, use of 
inorganic fertilizer, distance from extension agent office and perception of long-term change in 
temperatures and perception of land degradation (table 2). 
 
Agro-pastoralists and farmers who are primarily engaged in off-farm business are more likely to 
adopt to adopt fertilizer trees. In fact, agro-pastoralists or farmers selling fuelwood may have a 
greater incentive to use fertilizer trees because these trees not only enrich soil fertility and 
enhance crop productivity but also provide fodder for livestock and wood energy. Another likely 
explanation is that since farming is not their main occupation, they do not purchase inorganic 
fertilizer and prefer to substitute it by fertilizer trees. 
 
Ownership of farming related assets is positively and statistically significantly associated with 
adoption of fertilizer trees. Farm equipment can be considered as proxy of wealth and are 
necessary assets to foster adoption of technologies on farm. Farmers with more resources are less 
risk averse, have more access to information (Franzel, 1999) and are more eager to test 
technologies that have the potential to increase agricultural productivity and income. 
 

Agroforestry training exerts a positive effect on 
adoption of fertilizer trees. Agroforestry, 
including fertilizer trees, are more complex 
technologies as compared to annual crops and 
are considered as knowledge intensive 
technologies. Training in agroforestry therefore 
builds capacities of farmers to appropriately 
manage their fertilizer trees. This is consistent 
with a study by Franzel et al (2001) who 
highlighted that farmers’ ability to adopt and 
manage agroforestry is enhanced with access to 
required information and skills. 
 

Use of inorganic fertilizer positively influences the adoption of fertilizer trees. Research has 
shown that there is often a positive interaction and complementarity between the supply of 
mineral fertilizer and organic fertilizer (Akinnifesi et al., 2007). This is also emphasized in the 
theory of Integrated Soil Fertility Management (ISFM) that states inorganic fertilizer and organic 

Maize intercropped with Sesbania in Eastern 
Provicnce, Zambia. Photo by Olu Ajayi 
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matter have complementary interactions and are both necessary for sustainable improvement in 
soil health and crop productivity (Buresh et al., 1997, Vanlauwe et al., 2002). Farmers who are 
aware of potential benefits of agroforestry may be more willing to boost further their crop 
productivity by using both inorganic fertilizer and fertilizer trees.  
 
Distance to the extension office is negatively and significantly correlated with adoption of 
fertilizer trees. This is unpredicted, as one would expect that proximity to extension agents would 
increase the likelihood of receiving frequent technical advice and therefore higher probability of 
adoption new technologies. This negative relationship may be due to programme implementation 
where adopters may have been deliberately selected in remote areas. It may also indicate that 
fertilizer trees have been widely disseminated and reached even remote villages. Another 
explanation may lie in the way farmers’ training was conducted in the programme. Extension 
agents first trained some lead farmers who in turn other farmers residing in the village. So the 
variable distance to extension office may actually capture the lead farmers villages’ distance 
from the extension office. 
 
Farm households that perceive a long-term change in temperatures are more likely to adopt 
fertilizer trees. A number of studies have shown increasing interest of smallholder farmers in the 
contribution of agroforestry in climate change mitigation and adaptation (Akinnifesi et al., 2010, 
Thorlakson and Neufeldt, 2012). Fertilizer trees provide numerous benefits including fuelwood, 
income generation, soil fertility enhancement and environmental services. These technologies 
can therefore reduce smallholders’ vulnerability to climate change and enhance their resilience to 
current and future climate shocks.   
 
Farmers’ perception of land degradation is positively associated with adoption of fertilizer trees. 
Farmers are more likely to invest time, labour and capital in the management of fertilizer trees, 
soil fertility enhancing technologies, if they perceive soil fertility as a major problem on their 
farms. This finding corroborates several other studies that found that farmers’ perception with 
soil problem is positively correlated with adoption of soil conservation practices (Gould et al. 
1989, Traore et al. 1998). 
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Table 2: Determinants of fertilizer tree adoption 

 Probit estimates   Standard error 

Household characteristics   

Male headed household (dummy) -0.229 -0.173 
Age of the household head (years) 0.161 0.034 
Age of the household head squared (years) -0.000 -0.000 
Secondary education for household (dummy) 0.234 0.172 
Household size 0.033 0.061 
Household head main occupation is farming (dummy) -0.694*** -0.197 

 

Farm characteristics 

  

Farm size (acres) -0.024 -0.024 
Total livestock unit -0.049 -0.036 
Farm asset index 0.215*** 0.052 
Distance to output market (km) -0.012 -0.014 
Distance to government extension (km) 0.024** 0.011 
Quantity of fertilizer applied to maize (kg) 0.074* 0.044 
Household received agroforestry training (dummy) 0.514*** 0.114 

 
Household perceptions and shocks 

 
 

 

Rainfall has decreased in the last 20 years 0.263* 0.154 
Temperature has increased in the past 20 years 0.078 0.150 
Experienced drought in the past 5 years (dummy) -0.210 -0.246 
Experienced floods in the past 5 years (dummy) -0.195 -0.299 
Land degraded over time (dummy) 0.340** 0.148 
Constant -0.795 -0.845 
Observations 338  
Log likelihood -625.363  
Notes: Coefficient estimates with standard errors are shown; *, **, *** denotes significance 
level at 10%, 5% and 1%, respectively. 

 

5.2 Impact of adoption of fertilizer tree on food security 
 
The findings of the full information maximum likelihood estimates of the endogenous switching 
regression model are presented in table 3. Results of the correlation coefficients (r1 and r2) 
provide an indication of the selection bias. Correlation coefficient (r1) of the adopters is positive 
and significant indicating that there is self-selection among adopters. Such finding highlights the 
existence of observed and unobserved factors influence the decision to adopt fertilizer trees. In 
fact, as shown in figure 3 above, the perceived benefits of agroforestry technologies could trigger 
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farmers’ decisions to adopt fertilizer trees. Farm households who choose to adopt fertilizer trees 
would have had higher than average values of food productivity in comparison to a random 
household in the sample. The non-significance of covariance estimates for the non-adopters 
indicate that in the absence of adoption of fertilizer trees, there will be no evident difference in 
the average value of food productivity between non-adopters and a random household caused by 
unobserved factors. Moreover, the significant value for the Wald test for independence of the 
equations is statistically significant suggesting inter-dependence between selection equation and 
outcome equations for adopters and non-adopters, providing further evidence of endogeneity.  
 
Test results confirmed the validity of our instrument because it has a significant effect on the 
decision to adopt fertilizer trees but do not influence the outcome variable, here value of food 
productivity2. 
 
The estimation results of the second stage show that some variables such as distance to crop 
market, perception of increase in temperature and livestock numbers, affect the value of food 
productivity of both adopters and non-adopters. The coefficient on the perception of temperature 
increase variable suggests that even if farmers are more likely to claim to have witnessed an 
increase in temperature, and adopt fertilizer trees. This may not necessarily translate in an 
increase in the average value of food productivity. This may be an indication that farmers face 
some barriers in implementing climate change adaptation strategies. Such perceptions of climate 
change may not necessarily lead to greater food security if these barriers are not lifted.   
 
Other estimates encompassing age, farm size, gender, use of chemical fertilizer influence the 
food productivity of these two groups differently.  The coefficient for farm size is negative 
suggesting that among adopters, small-scale farmers have higher productivity than larger scale 
farmers. This result at first sight may appear counterintuitive but may imply that farmers with 
small areas of land are more technically efficient than farmers with larger farms. This inverse 
relationship between farm size and agricultural productivity has also been found in several 
studies. For example, Ansoms et al. (2008) confirms a strong inverse relationship between farm 
size and land productivity in rural Rwanda, justified partly by less alternative options for 
smallholders farmers’ labour forces. Harris and Orr (2014) also stress that smallholders are often 
limited in keeping the same return achieved from a small area of land on a larger scale.  
 
Age is a main determinant of the value for food productivity among adopters. The value for food 
productivity increases with age as it can be considered as a proxy for farm experience.  Older 
farmers have more experience with fertilizer tree management and are thus able to produce than 

																																																													
2 Training in agroforestry is correlated with decision to adopt fertilizer trees (ρ=0.480, se=0.132) but uncorrelated 
with food productivity (ρ=-0.019, se=0.126). 
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their younger counterparts. However beyond a certain age, they become less productive due to 
the life cycle effect.  
 
Putting in an additional kilogram of chemical fertilizer per unit of land increases the average 
value of food productivity among adopters. The use of inorganic fertilizer among fertilizer tree 
adopters exerts a significant effect on food crop productivity and thereby on the average value of 
food productivity. This result is in line with some authors’ findings that there is a higher increase 
in crop productivity when inorganic fertilizer is coupled with fertilizer trees in farm management 
(Place et al. 2002, Beedy et al., 2010).  
 
Gender is the main factor that determines the productivity among non-adopters only. Male-
headed households are more likely to have greater average value of food productivity than 
female-headed households. This is because female household heads are often divorcees or 
widows with less assets and resources to use in managing their farms.  
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Table 3. Full information maximum likelihood parameter estimates for value of maize produced 

 Fertilizer tree non-adopters Fertilizer tree adopters 

 Non-adopters Standard 
error 

Adopters  Standard 

error 

Household characteristics     

Male headed household (dummy) 0.432*** 0.127 0.153 0.198 
Age of the household head (years) 0.004 0.028 0.117*** 0.038 
Age of the household head squared (years) -0.000 0.000 -0.001** 0.000 
Secondary education for household (dummy) 0.069 0.144 -0.092 0.177 
Household size 0.002 0.031 0.008 0.055 
Household head main occupation is farming (dummy) -0.272 0.190 -0.061 0.233 

Farm characteristics     
Farm size (acres) -0.032 0.027 -0.054** 0.027 
Total livestock unit 0.127*** 0.030 -0.058* 0.033 
Farm asset index -0.055 0.075 0.087 0.058 
Distance to output market (km) -0.022** 0.009 -0.022*** 0.008 
Distance to government extension (km) 0.006 0.010 0.004 0.013 
Quantity of fertilizer applied to maize (kg) 0.007 0.048 0.126** 0.050 

Household perceptions and shocks     
Rainfall has decreased in the last 20 years -0.195 0.137 -0.029 0.204 
Temperature has increased in the past 20 years -0.472*** 0.152 -0.505*** 0.176 
Experienced drought in the past 5 years (dummy) 0.011 0.177 -0.110 0.255 
Experienced floods in the past 5 years (dummy) 0.102 0.187 -0.320 0.249 
Land degraded over time (dummy) -0.029 0.141 0.039 0.233 
Constant 10.35*** 0.710 7.312*** 1.171 
lnS0 -0.102 0.090   
lnS1   -0.032 0.124 
r0 -0.376 0.324   
r1   0.797*** 0.304 
Observations 338    
Log likelihood -625.363    
Wald test of independent equations χ2(2) =7.21**     
Notes: Coefficient estimates are shown with standard errors; *, **, *** denotes significance level at 10%, 5% and 
1%, respectively. 
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The estimates of the treatment effect of impact of adoption of fertilizer trees on the average value 
of food productivity and maize productivity are reported in table 4.  The Average Treatment 
effect on the Treated (ATT) measures the difference between the average productivity of 
adopters and what they would have had if they had not adopted fertilizer trees. The Average 
Treatment Effect on the Untreated (ATU) on the other hand assesses the difference between 
average productivity of non-adopters and their counterfactuals. These estimates account for 
selection bias unlike the mean differences reported in table 1.  
 

Result of the ATT reveals that adopters of 
fertilizer trees have a greater average value 
of food crop productivity of 11,585 kwacha 
3per acre than their counterfactuals. In the 
same vein, adoption of fertilizer trees 
generates greater maize productivity by 106 
kg per acre of maize compared to the 
counterfactual situation. These results mean 
that the adoption of fertilizer trees increases 
the average value of food productivity by an 
average of 35% and the maize productivity 
by an average of 32%.  These results provide 

evidence that fertilizer trees have an impact on 
food security in maize based food system as 
also attested by Akinnifesi et al. (2007, 2010). 

Without controlling for selection bias, the effect would have been an increase of 112% and 85% 
respectively in the average value of food and maize productivity attributed to the use of fertilizer 
trees. This corresponds to the percentage change between actual productivity of adopters and 
non-adopters.  
 
For the case of non-adopters, we have a decrease in their productivity if they have to adopt 
fertilizer trees. This later result is significant for the average value of food productivity but not 
significant for the maize productivity.  Significance of this later result highlights a heterogeneous 
effect in the adoption of fertilizer trees between adopters and non-adopters. It implies that non-
adopters are better off in allocating their resources to other uses than to agroforestry. These 
findings, as indicated in the paragraphs above point to the fact that adopters and non-adopters 
have different assets and endowment which shape their production function and responses to 
agro-forestry technologies.  
 

																																																													
3	approximately	US	dollar	2.23	as	per	March	2016	exchange	rates	

Maize intercropped with Gliricidia in Lilongwe, 
Malawi. Photo by Olu Ajayi 
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The heterogeneity effects is positive for maize yield and the average value of food productivity, 
indicating that the impact of adopting fertilizer tree on the outcomes is higher for the farm 
households that actually did adopt compared to those that did not adopt. 
 

Table 4: Average treatment effect of fertilizer tree adoption on food security  

  
Decision stage  

Average Treatment effect 
To adopt Not to adopt 

Maize yield (kg/acre)    

Farm households that adopted 435.455 329.642 105.803*** 

 (2.500) (1.689) (3.047) 

Farm households that did not adopt 182.205 235.390 -53.184*** 

 (6.581) (44.072) (44.503) 

Heterogeneity effects 253.240 94.252 158.987*** 

 (5.803) (44.204) (44.427) 

Value of food crops (MWK/acre)    

Farm households that adopted 44671.318 33085.930 11585.390*** 

 (496.890) (405.430) (352.390) 

Farm households that did not adopt 16555.760 21054.920 -4499.157*** 

 (1186.274) (1855.391) (2172.791) 

Heterogeneity effects 28115.550 12031.010 16084.550*** 

 (1198.880) (1773.822) (2140.114) 

Notes: Coefficient estimates are shown with bootstrapped standard errors in parenthesis; *, **, *** denotes 
significance level at 10%, 5% and 1%, respectively. 
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6. Conclusion 
 
Adoption of fertilizer trees provides an opportunity to improve soil fertility, food productivity 
and therefore contribute to food security. Yet, there is still little empirical research that 
documents the impact of fertilizer trees on food security on smallholder households. This paper 
analyzed the causal impact of adoption of fertilizer trees on food security. We used data from a 
recent field survey on rural farm households across the main agro-ecological zones of Malawi. 
An endogenous switching regression model was used in the analyses to account for selection bias 
due to observable and unobservable variables that influence the decision to adopt fertilizer trees 
and the food security outcome.  We estimated the impact on the average value of food 
productivity and maize productivity on both adopters and non-adopters of fertilizer trees. 
 
The results of the adoption point out some important issues. First, adoption of fertilizer trees is 
dictated by the perceived effectiveness of this technology in restoring fertility on degraded land. 
Fertilizer trees therefore represent a viable option to improve soil fertility in a country where 
farmers face constraints in using optimal quantities of inorganic fertilizer. Second, fertilizer trees 
like any other agroforestry technology is knowledge intensive since adopters of this technology 
were found to be those who had access to training on agroforestry management. Third, having a 
farm asset base is fundamental to facilitate adoption. These findings have important implications 
for the design of policy actions to address impediments to adoption of fertilizer trees and in 
targeting the right types of households with higher likelihood to adopt agroforestry technologies. 
Hence public policies to enhance adoption of fertilizer trees should emphasize on building 
knowledge base of farmers through training, and facilitating access to credit or farm capital. 
 
From the impact assessment model, the findings reveal that food productivity functions of 
adopters and non-adopters are driven by different factors. We were able to show that adoption of 
fertilizer trees improved food security of farmers who opted for this technology in maize-based 
mixed farming systems. However, results of the impact on non-adopters are more mitigated. 
Such results highlight the fact that adoption of fertilizer trees has heterogeneous effect on food 
productivity for adopters and non-adopters.  
 
The results presented in this study are average effects of the impact of fertilizer tree technologies. 
However, since farmers are not homogeneous groups of individuals with similar biophysical and 
socio-economic characteristics, an innovative research approach will be to look at the 
differentiated effect of the fertilizer tree technologies across different biophysical and socio-
economic endowments such as soil fertility, altitude, slope, farm size, and land ownership. Such 
research analysis can be conducted with large sample size and comprehensive data on the 
biophysical and socio-economic characteristics and is left for future investigation. 
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Although this study demonstrated significant and positive food security as a result of adoption of 
fertilizer trees, this impact could have been more impressive with a farming system that allows 
trees to grow for more than a year before being cut (for example, more use of Gliricidia sepium 
and Faidherbia albida by farmers). Indeed, most of the farming systems surveyed in this study 
are fast growing intercropped leguminous shrubs species that were renewed annually in the field. 
Normally, the larger the fertilizer tree and the greater the volume of biomass produced (nitrogen 
rich leaf foliage), the higher the soil fertility benefit.  Nonetheless, in spite of the short-term 
management option analyzed, this study contributes to filling the evidence gaps regarding the 
causal impact of fertilizer trees on food security, and their contribution to biodiversity of the 
system and to the local economies. 
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