Agroforestry
Centre

Trade-off analysis and economic valuation of intercropping teak maize under different silvicultural management

Ni'matul Khasanah
Aulia Perdana, Arif Rahmanullah, Gerhard Manurung, James M. Roshetko, Meine van Noordwijk, Betha Lusiana
"Tropentag 2013: Agricultural development within the rural-urban continuum"

Stuttgart-Hohenheim, September 17-19, 2013

Research Location

- Upland limestone in Wonosari, Gunung Kidul, Yogyakarta, Indonesia
- Annual rainfall 1750 mm
- Teak is the dominant crop

Teak Cultivation and Issues

- Smallholder systems
- Lack of good tree management
- Low quality timber and hence low revenues for farmers
- Teak production in Indonesia increasingly comes from this smallholder systems

Challenges

- Can multiple combination of management practices (spacing, pruning and thinning) increase timber quality and revenues for smallholder systems?
- What are the trade-offs amongst different management practices?

Objectives

- To explore the effect of different management practices (spacing, thinning, pruning) on growth and

Ex-ante analysis using the tree-crop interactions model WaNuLCAS production of teak and maize when they are intercropped,

- To identify the best and the most profitable management

Profitability Analysis practices for smallholder teak.

Centre

Ex-ante analysis using the tree-crop interactions model WaNuLCAS

WaNuLCAS model

Was developed to represent treecrop interactions in a wide range of agroforestry systems where trees and crops overlap in space and/or time (simultaneous and sequential agroforestry).

Spatial scale: plot (represents a four-layer soil profile, with four spatial zones.

Time scale: daily

Principle Component

Modules

\$ WaNuLCAS3.2_S7_13JulyM2.STM

 Welcome to the world of WaNuLCAS (version 4.0)

A model of Water, Nutrient and Light Capture in Agroforestry Systems

Platform and Interface

Excel file with parameter libraries and specific settings for a given run

STELLA as model development platform: allows non-modellers to easily run, diagramatically trace and modify the model

Dynamic linkage to Excel for input \& output manipulation

Outputs and Inputs

Outputs:

* Water, carbon, nutrient (nitrogen and phosphorous), financial and soil balance
- Tree and crop growth and production Inputs:
Climate, soil characteristic, tree and crop characteristic, and managements

Modeling Steps

* Parameterization (climate, soil, management, tree: T. grandis and crop: maize)
- Calibration and validation (tree growth: height and diameter, crop: maize yield)
- Model performance evaluation
\Rightarrow Scenario simulation of management practices

Scenarios

- Teak + maize (two cropping season per year)
* Initial teak density, trees ha ${ }^{-1}$ (tree spacing, m):
- $1600(2.5 \times 2.5)$
- 1111 (3×3)
- 625 (4×3)
\rightarrow Thinning:
- Light : 25% thinned at year 10
- Medium: $50 \%, 25 \%$ thinned at year 5 and 25% thinned at year 15 or 20
- Heavy: $75 \%, 50 \%$ thinned at year 5 and 25% thinned at year 15 or 20
- Pruning: 40% or 60% of canopy, pruned at year 4, 10 and 15
- Maize monoculture: two cropping season per year
- Teak monoculture: without pruning and thinning; allowing weeds to grow; with initial tree density $1200,800,400,833,556,278,469,313$, and 156 trees ha ${ }^{-1}$

Initial spacing

Initial spacing

Thinning

Medium (50\% of population)

Initial spacing

Trade-offs

Hypothesis

P40-T25Y10
P60-T25Y10
P40-T25Y5-T25Y15
P60-T25Y5-T25Y15
P40-T50Y5-T25Y15
P60-T50Y5-T25Y15
P40-T25Y5-T25Y20
P60-T25Y5-T25Y20
P40-T50Y5-T25Y20
P60-T50Y5-T25Y20
monoculture)
Wood Volume (relative to monoculture)

Centre

Assumptions

- Interest rate: 8\%
- Wage rate: USD 2.75/day
* Teak price: USD 202 per m³ (2009 prices of Yogyakarta)

NPV (\$ ha ${ }^{-1}$)

All scenarios under monoculture system and mixed tree + crop are profitable (NPV>0)

Return to labor (\$ day ${ }^{-1}$)

All scenarios are above daily wage rate (more attractive for farmer to engage)

Conclusion

- Maize intercropping at the early stage of teak growth is clearly advantageous either at low or high teak population density
\Rightarrow Max. wood volume ($\mathrm{m}^{3} \mathrm{ha}^{-1}$) was provided by the system with initial tree density 625 trees ha ${ }^{-1}, 25 \%$ of it was thinned at year 5 and another 25\% of it was thinned at year 15 and 40% of crown pruned at year 4,10 and 15
- The highest NPV and return to labour was provided by the system with the second 25% thinning done in year 20 instead of year 15
- Lower costs at initial period is the key components for higher profitability

WaNuLCAS model and manual
http://www.worldagroforestrycentre.org/af2/node/193

World
Agroforestry
Centre

Southeast Asia Regional Office
JI. CIFOR, Situ Gede, Sindang Barang, Bogor 16115
PO Box 161, Bogor 16001, Indonesia
Ph: +62 2518625415
Fax: +62 2518625416
Email: icraf-indonesia@cgiar.org
http://www.worldagroforestrycentre.org/sea

